【題目】已知二次函數(shù)y=﹣x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+2x+m0的解為_____

【答案】x1=﹣1x23

【解析】

由二次函數(shù)y=﹣x2+2x+m的部分圖象可以得到拋物線的對稱軸和拋物線與x軸的一個交點(diǎn)坐標(biāo),然后可以求出另一個交點(diǎn)坐標(biāo),再利用拋物線與x軸交點(diǎn)的橫坐標(biāo)與相應(yīng)的一元二次方程的根的關(guān)系即可得到關(guān)于x的一元二次方程﹣x2+2x+m0的解.

解:依題意得二次函數(shù)y=﹣x2+2x+m的對稱軸為x1,與x軸的一個交點(diǎn)為(3,0),

拋物線與x軸的另一個交點(diǎn)橫坐標(biāo)為1﹣(31)=﹣1,

交點(diǎn)坐標(biāo)為(﹣10

當(dāng)x=﹣1x3時,函數(shù)值y0,

即﹣x2+2x+m0,

關(guān)于x的一元二次方程﹣x2+2x+m0的解為x1=﹣1x23

故答案為:x1=﹣1x23

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:最值問題是數(shù)學(xué)中的一類較具挑戰(zhàn)性的問題.其實,數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學(xué)、物理的學(xué)者,相傳有位將軍曾向他請教一個問題﹣﹣如圖1,從A點(diǎn)出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A,連接ABl于點(diǎn)P,則PA+PBAB 的值最。

解答問題:

1)如圖2,⊙O的半徑為2,點(diǎn)AB、C在⊙O上,OAOB,∠AOC60°POB上一動點(diǎn),求PA+PC的最小值;

2)如圖3,已知菱形ABCD的邊長為6,∠DAB60°.將此菱形放置于平面直角坐標(biāo)系中,各頂點(diǎn)恰好在坐標(biāo)軸上.現(xiàn)有一動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個單位的速度,沿AC的方向,向點(diǎn)C運(yùn)動.當(dāng)?shù)竭_(dá)點(diǎn)C后,立即以相同的速度返回,返回途中,當(dāng)運(yùn)動到x軸上某一點(diǎn)M時,立即以每秒1個單位的速度,沿MB的方向,向點(diǎn)B運(yùn)動.當(dāng)?shù)竭_(dá)點(diǎn)B時,整個運(yùn)動停止.

①為使點(diǎn)P能在最短的時間內(nèi)到達(dá)點(diǎn)B處,則點(diǎn)M的位置應(yīng)如何確定?

②在①的條件下,設(shè)點(diǎn)P的運(yùn)動時間為ts),PAB的面積為S,在整個運(yùn)動過程中,試求St之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點(diǎn) B﹣10),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個焦點(diǎn)為D,點(diǎn)M為線段AD上的一動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長為1,當(dāng)t為何值時,1的長最大,并求最大值;(先根據(jù)題目畫圖,再計算)

3)在(2)的條件下,當(dāng)t為何值時,△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=ax+1x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=x0)相交于點(diǎn)P,PCx軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣20).

1)求雙曲線的解析式;

2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QHx軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與AOB相似時,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B5,0)兩點(diǎn),直線y=﹣ x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動點(diǎn),過點(diǎn)PPFx軸于點(diǎn)F,交 線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)求PE的長最大時m的值.

3Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以P、QC、D為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,請直接寫出存在 個滿足題意的點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上一點(diǎn).F是線段BC延長線上一點(diǎn),且CF=AE連接BE

1)發(fā)現(xiàn)問題:如圖①,若E是線段AC的中點(diǎn),連接EF,其他條件不變,猜想線段BEEF的數(shù)量關(guān)系

2)探究問題:如圖②,若E是線段AC上任意一點(diǎn),連接EF,其他條件不變,猜想線段BEEF的數(shù)量關(guān)系是什么?請證明你的猜想

3)解決問題:如圖③,若E是線段AC延長線上任意一點(diǎn),其他條件不變,且∠EBC=30°,AB=3請直接寫出AF的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和等邊△AEF都內(nèi)接于圓O,EFBC、CD別相交于點(diǎn)G、H.若AE6,則EG的長為( 。

A.B.3C.D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具店用2000元購進(jìn)一批玩具,面市后,供不應(yīng)求,于是店主又購進(jìn)同樣的玩具,所購的數(shù)量是第一批數(shù)量的3倍,但每件進(jìn)價貴了4元,結(jié)果購進(jìn)第二批玩具共用了6300.若兩批玩具的售價都是每件120元,且兩批玩具全部售完.

1)第一次購進(jìn)了多少件玩具?

2)求該玩具店銷售這兩批玩具共盈利多少元?

查看答案和解析>>

同步練習(xí)冊答案