【題目】如圖1,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時將點A,B分別向上平移4個單位,再向右平移3個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.

(1)求點C,D的坐標(biāo)及四邊形OBDC的面積;

(2)如圖2,若 P是線段BD上的一個動點,連接PC,PO,當(dāng)點PBD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.

(3)在四邊形OBDC內(nèi)是否存在一點P,連接PO,PB,PC,PD,使SPCD=SPBD; SPOB:SPOC=1?若存在這樣一點,求出點P的坐標(biāo),若不存在,試說明理由.

【答案】(1)24(2)比值不變,1(3)存在,P(3,2)

【解析】

(1)根據(jù)被開方數(shù)和絕對值大于等于0列式求出bn,從而得到A、B的坐標(biāo),再根據(jù)向上平移4個單位,則縱坐標(biāo)加4,向右平移3個單位,則橫坐標(biāo)加3,求出點C、D的坐標(biāo)即可,然后利用平行四邊形的面積公式,列式計算;

(2)根據(jù)平移的性質(zhì)可得ABCD,再過點PPEAB,根據(jù)平行公理可得PECD,然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠DCP=CPE,BOP=OPE,然后求出∠CPO=DCP+BOP,從而判斷出比值不變;

(3)根據(jù)面積相等的特殊性可知,點P為平行四邊形ABCD對角線的交點,即PB=PC,因此根據(jù)中點可求出點P的坐標(biāo).

(1)如圖1,

由題意得,a+2=0,a=﹣2,則A(﹣2,0),

5﹣n=0,n=5,則B(5,0),

∵點A,B分別向上平移4個單位,再向右平移3個單位,

∴點C(1,4),D(8,4);

OB=5,CD=8﹣1=7,

S四邊形OBDC=(CD+OB)×h=×4×(5+7)=24;

(2)的值不發(fā)生變化,且值為1,理由是:

由平移的性質(zhì)可得ABCD,

如圖2,過點PPEAB,交ACE,則PECD,

∴∠DCP=CPE,BOP=OPE,

∴∠CPO=CPE+OPE=DCP+BOP,

=1,比值不變

(3)存在,如圖3,連接ADBC交于點P,

AB=CD,ABCD,

∴四邊形ABCD是平行四邊形,

BP=CP,

SPCD=SPBD; SPOB:SPOC=1,

C(1,4),B(5,0)

P(3,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了減輕學(xué)生的課業(yè)負(fù)擔(dān),某市教育行政部門規(guī)定中學(xué)生每天完成家庭作業(yè)的平均時間不能超過1.5小時,為了了解該市中學(xué)生課業(yè)負(fù)擔(dān)情況,對部分學(xué)生每天完成家庭作業(yè)所用的時間進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)分別求出每天完成家庭作業(yè)所用的時間為“1小時”和“2小時”的學(xué)生人數(shù)占總?cè)藬?shù)的百分比,以及所用的時間為“1.5小時”的學(xué)生人數(shù),并補(bǔ)全兩個統(tǒng)計圖;
(3)本次調(diào)查中,中學(xué)生每天完成家庭作業(yè)所用的平均時間是否符合要求?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.

1)孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?

2)某同學(xué)測試成績?yōu)?/span>70分,他的綜合評價得分有可能達(dá)到A等嗎?為什么?

3)如果一個同學(xué)綜合評價要達(dá)到A等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=∠2,∠C=∠D

試說明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC AD = 9cm,BC = 6cm,點P、Q分別從點A、C同時出發(fā),點P以1cm/s的速度由AD運動,點Q以2cm/s的速度由CB運動.問幾秒后直線PQ將四邊形ABCD截出一個平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將腰長為4的等腰直角三角形放在直角坐標(biāo)系中,順次連接各邊中點得到第1個三角形,再順次連接各邊中點得到第2個三角形……,如此操作下去,那么,第6個三角形的直角頂點坐標(biāo)為( 。

A. (﹣, B. (﹣, C. (﹣, D. (﹣,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將ABE沿BE翻折,使點A落在對角線BD上的M點,將CDF沿DF翻折,使點C落在對角線BD上的N點.

1)求證:四邊形BFDE是平行四邊形.

2)若四邊形BFDE是菱形,BE =2,求菱形BFDE的面積.

查看答案和解析>>

同步練習(xí)冊答案