【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F.
(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;
(2)如圖2,當(dāng)AD=25,且AE<DE時,求的值;
(3)如圖3,當(dāng)BEEF=108時,求BP的值.
【答案】(1)證明見解析;(2);(3)9.
【解析】
(1)先判斷出∠A=∠D=90°,AB=DC,再判斷出AE=DE,即可得出結(jié)論;
(2)利用折疊的性質(zhì),得出∠PGC=∠PBC=90°,∠BPC=∠GPC,進(jìn)而判斷出∠GPF=∠PFB,得出BP=BF,證明∽,得出比例式建立方程求解即可得出,再判斷出,進(jìn)而求出PB,即可得出結(jié)論;
(3)判斷出,得出,即可得出結(jié)論.
解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,
∵E是AD中點,
∴AE=DE,
在△AEB和△DEC中,
,
∴△AEB≌△DEC(SAS);
(2)在矩形ABCD,∠ABC=90°,
∵△BPC沿PC折疊得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF;
∵∠BEC=90°,
∴∠AEB+∠CED=90°,
∵∠AEB+∠ABE=90°,
∴∠CED=∠ABE,
∵∠A=∠D=90°,
∴△ABE∽△DEC,
∴,
設(shè)AE=x,
∴DE=25﹣x,
∴,
∴x=9或x=16,
∵AE<DE,
∴AE=9,DE=16,
∴CE=20,BE=15,
由折疊得,BP=PG,
∴BP=BF=PG,
∵BE∥PG,
∴△ECF∽△GCP,
∴,
設(shè)BP=BF=PG=y,
∴,
∴y=,
∴BP=,
∴EF=BE﹣BF=15﹣,
∴.
(3)如圖,連接FG,
∵∠GEF=∠PGC=90°,
∴∠GEF+∠PGC=180°,
∴BF∥PG
∵BF=PG,
∴BPGF是菱形,
∴BP∥GF,
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴,
∴BEEF=ABGF,
∵BEEF=108,AB=12,
∴GF=9,
∴BP=GF=9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商業(yè)集團(tuán)新進(jìn)了40臺空調(diào)機(jī),60臺電冰箱,計劃調(diào)配給下屬的甲、乙兩個連鎖店銷售,其中70臺給甲連鎖店,30臺給乙連鎖店.兩個連鎖店銷售這兩種電器每臺的利潤(單位:元)如下表:
空調(diào)機(jī) | 電冰箱 | |
甲連鎖店 | 200 | 170 |
乙連鎖店 | 160 | 150 |
設(shè)集團(tuán)調(diào)配給甲連鎖店臺空調(diào)機(jī),集團(tuán)賣出這100臺電器的總利潤為(元).
(1)求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;
(2)為了促銷,集團(tuán)決定僅對甲連鎖店的空調(diào)機(jī)每臺讓利元銷售,其他的銷售利潤都不變,并且讓利后每臺空調(diào)機(jī)的利潤比甲連鎖店銷售每臺電冰箱的利潤至少高出10元,問該集團(tuán)應(yīng)該如何設(shè)計調(diào)配方案,能使總利潤達(dá)到最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(0,3),連接AC.
(1)求這個二次函數(shù)的解析式;
(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得△ACD的面積最大?若存在,求出點D的坐標(biāo)及△ACD面積的最大值,若不存在,請說明理由.
(3)在拋物線上是否存在點E,使得△ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標(biāo)即可;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經(jīng)過點C,且圓的直徑AB在線段AE上.點D是線段AC上任意一點(不含端點),連接OD,當(dāng)AB=4時,則CD+OD的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=mx交于點C,直線l:y=4分別交兩函數(shù)圖象于點A(1,4)和點B,過點B作BD⊥l交反比例函數(shù)圖象于點 D.
(1)求反比例函數(shù)的解析式;
(2)當(dāng)BD=2AB時,求點B的坐標(biāo);
(3)在(2)的條件下,直接寫出不等式>mx的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B點,與y軸交于點C,其中點A的半標(biāo)為(﹣2,3)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)如圖,若將點C沿y軸向上平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×5的網(wǎng)格(小正方形邊長為1)中,Rt△ABC的三個頂點都在格點上.
(1)在網(wǎng)格中,找到格點D,使四邊形ACBD的面積為10,并畫出這個四邊形.
(2)借助網(wǎng)格、只用直尺(無刻度)在AB上找一點E,使△AEC為等腰三角形,且AE=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“掃黑除惡”受到廣大人民的關(guān)注,某中學(xué)對部分學(xué)生就“掃黑除惡”知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計圖中“很了解”部分所對應(yīng)扇形的圓心角為_______;
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對“掃黑除惡”知識達(dá)到“很了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E、F分別在邊CD、AB上,且滿足CE=AF.
(1)求證:△ADE≌△CBF;
(2)連接AC,若AC恰好平分∠EAF,試判斷四邊形AECF為何種特殊的四邊形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com