【題目】某烤鴨店在確定烤鴨的烤制時(shí)間時(shí),主要依據(jù)的是下表的數(shù)據(jù):
鴨的質(zhì)量/千克 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
烤制時(shí)間/分 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
設(shè)鴨的質(zhì)量為x千克,烤制時(shí)間為t分鐘,估計(jì)當(dāng)時(shí),的值為( )
A. 140B. 200C. 240D. 260
【答案】C
【解析】
觀察表格可知,烤鴨的質(zhì)量每增加0.5千克,烤制時(shí)間增加20分鐘,由此可判斷烤制時(shí)間是烤鴨質(zhì)量的一次函數(shù),設(shè)烤制時(shí)間為t分鐘,烤鴨的質(zhì)量為x千克,t與x的一次函數(shù)關(guān)系式為:t=kx+b,。1,60),(2,100)代入,運(yùn)用待定系數(shù)法求出函數(shù)關(guān)系式,再將x=5.5千克代入即可求出烤制時(shí)間t.
從表中可以看出,烤鴨的質(zhì)量每增加0.5千克,烤制的時(shí)間增加20分鐘,由此可知烤制時(shí)間是烤鴨質(zhì)量的一次函數(shù).
設(shè)烤制時(shí)間為t分鐘,烤鴨的質(zhì)量為x千克,t與x的一次函數(shù)關(guān)系式為:t=kx+b,
,
解得 ,
所以t=40x+20.
當(dāng)x=5.5千克時(shí),t=40×5.5+20=240.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外興趣小組在本校學(xué)生中開展“感動(dòng)中國2013年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:
類別 | A | B | C | D |
頻數(shù) | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= ,b= ;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在等腰三角形ABC中,AB=AC,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,CE與BD交于點(diǎn)O.
(1)求證:△BCE≌△CBD;
(2)寫出圖中所有相等的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)傾器測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.則河的寬度為________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊、在坐標(biāo)軸上,點(diǎn)坐標(biāo),將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度,得到正方形,交線段于點(diǎn),的延長(zhǎng)線交線段于點(diǎn),連、.
(1)求證:;
(2)求的度數(shù),并判斷線段、、之間的數(shù)量關(guān)系,說明理由;
(3)當(dāng)時(shí),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的一邊長(zhǎng)為2,周長(zhǎng)為8,那么它的腰長(zhǎng)為 ( )
A. 2 B. 3 C. 2或3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DBC都是邊長(zhǎng)為2的等邊三角形.
(1)以圖1中的某個(gè)點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC與△ABC重合,則滿足題意的點(diǎn)為: (寫出符合條件的所有點(diǎn));
(2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)BB1= 時(shí),四邊形ABD1C1為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于點(diǎn)A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com