【題目】如圖,CE是平行四邊形ABCD的邊AB的垂直平分線,垂足為點O,CEDA的延長線交于點E,連接AC,BE,則下列結論:①AC=AD;②AO=;③四邊形ACBE是菱形;④其中正確的結論有____(填寫所有正確結論的序號)

【答案】①②③④;

【解析】

根據(jù)平行四邊形的性質以及判定定理、菱形的判定方法、平行線分線段成比例定理一一判斷即可;

解:解:∵四邊形ABCD是平行四邊形,
ABCDAB=CD(平行四邊形對邊相等且平行),
EC垂直平分AB,

,故②正確,

,

OADC

,

AE=AD,OE=OC
OA=OB,OE=OC,
∴四邊形ACBE是平行四邊形(對角線相互平分的四邊形是平行四邊形),
ABEC,
∴四邊形ACBE是菱形(對角線相互垂直的四邊形是菱形),故③正確,
∵∠DCE=90°,DA=AE,
AC=AD=AE,故①正確;

,

,故④正確;

綜上①②③④均正確,

故答案為:①②③④;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,相交于點,且,,垂足分別為點、.

1)若,求的長.

2)如圖2,取中點,連接、,請判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB18cm,AD4cm.PQ分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設運動時間為x秒,PBQ的面積為y(cm2)

(1)y關于x的函數(shù)關系式,并寫出x的取值范圍;

(2)PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BC相交于點N.連接BM,DN

(1)求證:四邊形BMDN是菱形;

(2)AB=4,AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】補全解答過程:

已知:如圖,直線ABCD,直線EF與直線ABCD分別交于點GH;GM平分∠FGB,∠360°.求∠1的度數(shù).

解:∵EFCD交于點H,(已知)

∴∠3=∠4.(   

∵∠360°,(已知)

∴∠460°.(   

ABCD,EFABCD交于點G,H,(已知)

∴∠4+FGB180°.(   

∴∠FGB   

GM平分∠FGB,(已知)

∴∠1   °.(角平分線的定義)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在中,已知AB=AC,垂足為點D,點FAD的延長線上,且CEBF,試說明DE=DF的理由.

解:因為AB=AC,ADBC(已知)

所以BD=

因為CEBF(已知)

所以=

中,

=

=

所以( )

所以DE=DF( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為AB,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調查共抽取了多少名學生?

2)求測試結果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A2臺、B3臺需54萬,購買A4臺、B2臺需68萬元.

1)求出A型、B型污水處理設備的單價;

2)經核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.

查看答案和解析>>

同步練習冊答案