當(dāng)x滿足什么條件時,下列分式有意義?
(1)
2x
x+1
;
(2)
x2-1
x2+1
;
(3)
|x|
1-|x|
;
(4)
x2-1
(x+2)(x-1)
分析:分別根據(jù)分式有意義,分母等于0列式計算即可得解.
解答:解:(1)x+1≠0,
解得x≠-1;

(2)∵x2+1≥1,
∴x為任意實數(shù);

(3)1-|x|≠0,
解得x≠±1;

(4)(x+2)(x-1)≠0,
解得x≠-2且x≠1.
點評:本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:
(1)分式無意義?分母為零;
(2)分式有意義?分母不為零;
(3)分式值為零?分子為零且分母不為零.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當(dāng)k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當(dāng)k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、設(shè)a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2(n為大于0的自然數(shù)).
(1)探究an是否為8的倍數(shù),并用文字語言表述你所獲得的結(jié)論;
(2)若一個數(shù)的算術(shù)平方根是一個自然數(shù),則稱這個數(shù)是“完全平方數(shù)”.試找出a1,a2,…,an,…這一列數(shù)中從小到大排列的前4個完全平方數(shù),并指出當(dāng)n滿足什么條件時,an為完全平方數(shù)(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣安)已知反比例函數(shù)y=
kx
(k≠0)和一次函數(shù)y=x-6.
(1)若一次函數(shù)與反比例函數(shù)的圖象交于點P(2,m),求m和k的值.
(2)當(dāng)k滿足什么條件時,兩函數(shù)的圖象沒有交點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某旅行社的一則廣告如圖:
(1)當(dāng)x滿足什么條件時,參游人員人均旅游費用為500元.
(2)設(shè)某公司參游人數(shù)為x人,旅游總費用為y元,就不同情況,分別寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)甲公司計劃用28000元組織一批員工旅游,問:最多可以安排多少人參加?
(4)乙公司有55人參加旅游,老板付給領(lǐng)隊小李30000元作為旅游費用,小李說:“費用不夠,參游人數(shù)需減少”.老板說:“費用足夠,人員還可增加”.請問小李、老板的話是否有道理?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=
kx
交于A(-2,a)和點B(b,-2).
(1)求A、B兩點的坐標(biāo);
(2)求反比例函數(shù)的解析式;
(3)求△AOB的面積;
(4)從圖象中找出當(dāng)x滿足什么條件時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案