【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0, )為圓心,以 長(zhǎng)為半徑作⊙M交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),連接AM并延長(zhǎng)交⊙M于P點(diǎn),連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請(qǐng)求△ACP的面積.
【答案】(1)直線CP的解析式為y=3x-3;(2)△ACP的面積=12ACPC=12×23×6=63.
【解析】
試題(1)要求CP所在的直線的解析式,就必須知道C,P兩點(diǎn)的坐標(biāo),有圓心M的坐標(biāo),有圓的半徑,那么可求出OC的,OM的長(zhǎng),直角三角形AMO中有AM,OM的值,就能求出OA,OB的長(zhǎng),那么P的橫坐標(biāo)就求出來(lái)了,連接PB,那么OM是三角形APB的中位線,PB=2OM,已經(jīng)求出了OM的長(zhǎng),那么PB的長(zhǎng)也就求出來(lái)了,這樣P點(diǎn)的坐標(biāo)就求出來(lái)了,有了C,P的坐標(biāo),可根據(jù)待定系數(shù)法求出CP所在直線的解析式;
(2)求三角形ACP的面積實(shí)際上是求直角邊AC,PC的長(zhǎng),因?yàn)槿切?/span>ACP是個(gè)直角三角形,有斜邊AB的長(zhǎng),只要求出這個(gè)三角形中銳角的度數(shù),即可求出直角邊的長(zhǎng),在三角形AMO中,我們可求出∠AMO的度數(shù),根據(jù)圓周角定理,也就求出了∠P的度數(shù),有了銳角的度數(shù)和斜邊的長(zhǎng),直角邊就能求出來(lái)了,面積也就能求出來(lái)了.
試題解析: (1)連接PB,
∵PA是⊙M的直徑,
∴∠PBA=90°,
∵DC是⊙M的直徑,且垂直于弦AB,
∴DC平分弦AB,
在Rt△AMO中AM=2,OM=,
∴AO=OB=3,
又∵MO⊥AB,
∴PB∥MO,
∴PB=2OM=2,
∴P點(diǎn)坐標(biāo)為(3,2),
∵CM=2,OM=,
∴OC=CMOM=,
∴C(0,),直線CP過(guò)C,P兩點(diǎn),
設(shè)直線CP的解析式為y=kx+b(k≠0),
得到,
解得:,
∴直線CP的解析式為y=x;
(2)在Rt△AMO中,∠AMO=60°,
又∵AM=CM,
∴△AMC為等邊三角形,
∴AC=AM=2,∠MAC=60°
又∵AP為⊙M的直徑,
∴∠ACP=90°,∠APC=30°,
PC=AC=×2=6,
∴△ACP的面積=ACPC=×2×6=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,E是AB上一點(diǎn),以CE為直徑的⊙O交BC于點(diǎn)F,連接DO,且∠DOC=90°.
(1)求證:AB是⊙O的切線;
(2)若DF=2,DC=6,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)、兩點(diǎn).
①求點(diǎn)的坐標(biāo);
②求拋物線的解析式;
③如圖,點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),請(qǐng)求出點(diǎn)的坐標(biāo)和面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)畫(huà)片《小豬佩奇》風(fēng)靡全球,受到孩子們的喜愛(ài),現(xiàn)有4張(小豬佩奇)角色卡片,分別是A佩奇.B喬治.C佩奇媽媽.D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同)姐弟兩人做游戲,他們講這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機(jī)抽取一張,求恰好抽到A佩奇的概率;
(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好姐姐抽到A佩奇,弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)為對(duì)角線上異于點(diǎn)的一個(gè)動(dòng)點(diǎn),聯(lián)結(jié),將沿所在的直線翻折,使得點(diǎn)落在點(diǎn)的位置
(1)當(dāng)時(shí),求點(diǎn)到直線的距離。
(2)聯(lián)結(jié)交于,求當(dāng)和相似時(shí),線段的長(zhǎng)。
(3)當(dāng)時(shí),請(qǐng)直接寫(xiě)出此時(shí)的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,有一直徑為CD的半圓,圓心為點(diǎn)O,CD=2,現(xiàn)有兩點(diǎn)E、F,分別從點(diǎn)A、點(diǎn)C同時(shí)出發(fā),點(diǎn)E沿線段AD以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)F沿線段CB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)E離開(kāi)點(diǎn)A的時(shí)間為t(s),回答下列問(wèn)題:
(1)如圖①,根據(jù)下列條件,分別求出t的值.
①EF與半圓相切;
②△EOF是等腰三角形.
(2)如圖②,點(diǎn)P是EF的中點(diǎn),Q是半圓上一點(diǎn),請(qǐng)直接寫(xiě)出PQ+OQ的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家水果店以每斤6元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤12元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出10斤.為保證每天至少售出360斤,水果店決定降價(jià)銷(xiāo)售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷(xiāo)售量是多少斤(用含x的代數(shù)式表示);
(2)銷(xiāo)售這種水果要想每天盈利1200元,那么水果店需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】銳角ΔABC中,BC=6,SΔABC=12,兩動(dòng)點(diǎn)M,N分別在邊AB,AC上滑動(dòng),且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長(zhǎng)為x,正方形MPQN與ΔABC公共部分的面積為y(y>0).
(1)ΔABC中邊BC上高AD=______.
(2)當(dāng)x=______時(shí),PQ恰好落在邊BC上(如圖1).
(3)當(dāng)PQ在ΔABC外部時(shí)(如圖2),求y關(guān)于x的函數(shù)關(guān)系式.(注明x的取值范圍)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com