【題目】在綜合實(shí)踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測得河對岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)
【答案】解:如圖作BH⊥EF,CK⊥MN,垂足分別為H、K,則四邊形BHCK是矩形,
設(shè)CK=HB=x,
∵∠CKA=90°,∠CAK=45°,
∴∠CAK=∠ACK=45°,
∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,
∴HD=x﹣30+10=x﹣20,
在Rt△BHD中,∵∠BHD=90°,∠HBD=30°,
∴tan30°= ,
∴ = ,
解得x=30+10 .
∴河的寬度為(30+10 )米
【解析】如圖作BH⊥EF,CK⊥MN,垂足分別為H、K,則四邊形BHCK是矩形,設(shè)CK=HB=x,根據(jù)tan30°= 列出方程即可解決問題.
【考點(diǎn)精析】本題主要考查了關(guān)于方向角問題的相關(guān)知識(shí)點(diǎn),需要掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)此次共調(diào)查了多少位學(xué)生?
(2)將表格填充完整;
步行 | 騎自行車 | 坐公共汽車 | 其他 |
50 |
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y,則( )
A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小時(shí),則∠AMN+∠ANM的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長至點(diǎn)E,使得OE=OB,交⊙O于點(diǎn)F,連接AE,CE.
(1)求證:AE是⊙O的切線;
(2)求證:四邊形ADCE是矩形;
(3)若BD= AD=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠設(shè)計(jì)了一款成本為10元/件的小工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x,y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式.
(2)當(dāng)銷售單價(jià)為多少元時(shí),工藝品廠試銷該小工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售額﹣成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com