【題目】如圖,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分別是AB邊上的中線和高.
(1)求證:AE=ED;
(2)若AC=2,求△CDE的周長.
【答案】(1)見解析(2)
【解析】
試題分析:(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得CD=AD,根據(jù)直角三角形的兩個銳角互余,得∠A=60°,從而判定△ACD是等邊三角形,再根據(jù)等腰三角形的三線合一的性質(zhì)即可證明;
(2)結(jié)合(1)中的結(jié)論,求得CD=2,DE=1,只需根據(jù)勾股定理求得CE的長即可.
(1)證明:∵∠ACB=90°,CD是AB邊上的中線,
∴CD=AD=DB.
∵∠B=30°,
∴∠A=60°.
∴△ACD是等邊三角形.
∵CE是斜邊AB上的高,
∴AE=ED.
(2)解:由(1)得AC=CD=AD=2ED,
又AC=2,
∴CD=2,ED=1.
∴.
∴△CDE的周長=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點B的坐標,并根據(jù)圖象回答:當x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年4月,生物學(xué)家發(fā)現(xiàn)一種病毒的長度約為0.0000043米,利用科學(xué)記數(shù)法表示為( 。
A. 4.3×106米 B. 4.3×10﹣5米 C. 4.3×10﹣6米 D. 43×107米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組有7名成員,他們的年齡(單位:歲)分別為:13,14,14,15,13,14,15,則他們年齡的眾數(shù)和中位數(shù)分別為( )
A.13,14
B.14,14
C.14,13.5
D.14,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A. 兩直線被第三條直線所截,同位角相等
B. 三角形的一個外角等于兩個內(nèi)角的和
C. 多邊形最多有三個外角是鈍角
D. 連接平面上三點構(gòu)成的圖形是三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)的圖象與反比例函數(shù)(為常數(shù),)的圖象有一個交點的橫坐標是2.
(1)求兩個函數(shù)圖象的交點坐標;
(2)若點,是反比例函數(shù)圖象上的兩點,且,試比較的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com