【題目】某校組織初一師生春游,如果單獨租用45座客車若干輛,剛好坐滿;如果單獨租用60座客車,可少租1輛,且余15個座位.
(1)求參加春游的人數(shù);
(2)已知租用45座的客車日租金為每輛車250元, 60座的客車日租金為每輛300元,問租哪種客車更合算?省多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強在某超市同時購買A,B兩種商品共三次,僅有第一次超市將A,B兩種商品同時按折價格出售,其余兩次均按標(biāo)價出售. 小強三次購買A,B商品的數(shù)量和費用如下表所示:
A商品的數(shù)量(個) | B商品的數(shù)量(個) | 購買總費用(元) | |
第一次購買 | 8 | 6 | 930 |
第二次購買 | 6 | 5 | 980 |
第三次購買 | 3 | 8 | 1040 |
(1)求 A,B商品的標(biāo)價;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)A、E、F、C在同一直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC若AB=CD,G是EF的中點嗎?請證明你的結(jié)論。若將 ⊿ABC的邊EC經(jīng)AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結(jié)論還成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直角梯形ABCO中,∠AOC=90°,AB∥x軸,AB=6,若以O為原點,OA,OC所在直線為y軸和x軸建立如圖所示直角坐標(biāo)系,A(0,a),C(c,0)中a,c滿足|a+c﹣10|+=0
(1)求出點A、B、C的坐標(biāo);
(2)如圖2,若點M從點C出發(fā),以2單位/秒的速度沿CO方向移動,點N從原點出發(fā),以1單位/秒的速度沿OA方向移動,設(shè)M、N兩點同時出發(fā),且運動時間為t秒,當(dāng)點N從點O運動到點A時,點M同時也停止運動,在它們的移動過程中,當(dāng)2S△ABN≤S△BCM時,求t的取值范圍:
(3)如圖3,若點N是線段OA延長上的一動點,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求的值(結(jié)果用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以“綠色生活,美麗家園”為主題的2019年中國北京世界園藝博覽會(簡稱北京世園會)已拉開帷幕,講述人與自然和譜共生的精彩故事,世園會甲工程隊制作園藝造型300個與乙工程隊制作園藝造型400個所用時間相等,乙工程隊每天比甲工程隊多制作10個園藝造型,求甲工程隊每天制作園藝造型多少個?
兩名同學(xué)所列的方程如下:
根據(jù)以上信息,解答下列問題:
(1)小明同學(xué)所列方程中的x表示 ,小紅同學(xué)所列方程中的y表 ;
(2)根據(jù)你選擇的方程,求出甲工程隊每天制作園藝造型多少個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當(dāng)有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和利潤如下表,設(shè)每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.
A | B | |
成本(元/瓶) | 50 | 35 |
利潤(元/瓶) | 20 | 15 |
(1)請求出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該廠每天至少投入成本26 400元,那么每天至少獲利多少元?
(3)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對A產(chǎn)品進行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足﹣(a﹣4)2≥0,c=+8.
(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對角線的交點D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動1個單位長度的速度平移,設(shè)平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;
(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PM⊥PO,交直線AB于M,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com