閱讀材料:若x+2是x2-mx-8的一個因式,我們不難得到x2-mx-8=(x+2)(x-4),易知m=2.現(xiàn)在我們用另一種方法來求m的值:觀察上面的等式,可以發(fā)現(xiàn)當x=-2時,x2-mx-8=(x+2)(x-4)=(-2+2)(-2-4)=O,也就是說x=-2是方程x2-mx-8=0的一個根,由此可以得到(-2)2-m(-2)-8=0,解得m=2.
問題:若x+1是2x3+x2+mx-6的一個因式,請運用上述方法求出m的值.

解:∵x+1是2x3+x2+mx-6的一個因式,x+1=0,
x=-1,
∴x=-1代入方程2x3+x2+mx-6=0得:
-2+1-m-6=0,
m=-7.
分析:求出x=-1,代入方程2x3+x2+mx-6=0,即可求出m.
點評:本題考查了一元二次方程的解,分解因式的應用,主要考查學生的計算能力和理解能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•濟寧)閱讀材料:
若a,b都是非負實數(shù),則a+b≥2
ab
.當且僅當a=b時,“=”成立.
證明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.當且僅當a=b時,“=”成立.
舉例應用:
已知x>0,求函數(shù)y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.當且僅當2x=
2
x
,即x=1時,“=”成立.
當x=1時,函數(shù)取得最小值,y最小=4.
問題解決:
汽車的經(jīng)濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:若x+2是x2-mx-8的一個因式,我們不難得到x2-mx-8=(x+2)(x-4),易知m=2.現(xiàn)在我們用另一種方法來求m的值:觀察上面的等式,可以發(fā)現(xiàn)當x=-2時,x2-mx-8=(x+2)(x-4)=(-2+2)(-2-4)=O,也就是說x=-2是方程x2-mx-8=0的一個根,由此可以得到(-2)2-m(-2)-8=0,解得m=2.
問題:若x+1是2x3+x2+mx-6的一個因式,請運用上述方法求出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先閱讀材料:若整數(shù)a是整系數(shù)方程x3+px2+qx+r=0的解,則-r=a(a2+pa+q),說明a是r因數(shù).根據(jù)以上材料,可求得x3+4x2-3x-2=0的整數(shù)解為x=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀材料:若x+2是x2-mx-8的一個因式,我們不難得到x2-mx-8=(x+2)(x-4),易知m=2.現(xiàn)在我們用另一種方法來求m的值:觀察上面的等式,可以發(fā)現(xiàn)當x=-2時,x2-mx-8=(x+2)(x-4)=(-2+2)(-2-4)=O,也就是說x=-2是方程x2-mx-8=0的一個根,由此可以得到(-2)2-m(-2)-8=0,解得m=2.
問題:若x+1是2x3+x2+mx-6的一個因式,請運用上述方法求出m的值.

查看答案和解析>>

同步練習冊答案