【題目】某班10名學(xué)生的校服尺寸與對應(yīng)人數(shù)如表所示:
尺寸(cm) | 160 | 165 | 170 | 175 | 180 |
學(xué)生人數(shù)(人) | 1 | 3 | 2 | 2 | 2 |
則這10名學(xué)生校服尺寸的眾數(shù)和中位數(shù)分別為( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm
【答案】B
【解析】解:由表格可知,這10名學(xué)生校服尺寸的眾數(shù)是165cm,
這10名學(xué)生校服尺寸按從小到大排列是:160、165、165、165、170、170、175、175、180、180,
故這10名學(xué)生校服尺寸的中位數(shù)是: cm,
故選B.
根據(jù)表格可以直接得到這10名學(xué)生校服尺寸的眾數(shù),然后將表格中數(shù)據(jù)按從小到大的順序排列即可得到中位數(shù).本題考查眾數(shù)和中位數(shù),解題的關(guān)鍵是明確眾數(shù)和中位數(shù)的定義,會求一組數(shù)據(jù)的眾數(shù)和中位數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某一次實(shí)驗(yàn)中,測得兩個(gè)變量之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 | 12 | |
y | 12.03 | 5.98 | 3.03 | 1.99 | 1.00 |
請你根據(jù)表格回答下列問題:
①這兩個(gè)變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由;
②請你寫出這個(gè)函數(shù)的解析式;
③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3)、B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點(diǎn)為D,與x軸的另一交點(diǎn)為C,對稱軸交x軸于點(diǎn)E,連接BD,求cos∠DBE;
(3)在直線BD上是否存在點(diǎn)F,使由B、C、F三點(diǎn)構(gòu)成的三角形與△BDE相似?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由6根鋼管首尾順次鉸接而成六邊形鋼架ABCDEF,相鄰兩鋼管可以轉(zhuǎn)動.已知各鋼管的長度為AB=DE=1米,BC=CD=EF=FA=2米.(鉸接點(diǎn)長度忽略不計(jì))
(1)轉(zhuǎn)動鋼管得到三角形鋼架,如圖1,則點(diǎn)A,E之間的距離是米.
(2)轉(zhuǎn)動鋼管得到如圖2所示的六邊形鋼架,有∠A=∠B=∠C=∠D=120°,現(xiàn)用三根鋼條連接頂點(diǎn)使該鋼架不能活動,則所用三根鋼條總長度的最小值是米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x﹣ 與x,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y= (k>0)圖象交于點(diǎn)C,D,過點(diǎn)A作x軸的垂線交該反比例函數(shù)圖象于點(diǎn)E.
(1)求點(diǎn)A的坐標(biāo).
(2)若AE=AC.
①求k的值.
②試判斷點(diǎn)E與點(diǎn)D是否關(guān)于原點(diǎn)O成中心對稱?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的推理.
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,試說明:AB∥CD.
完成推理過程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的對角線AC,BD交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是OB,OC上的動點(diǎn).當(dāng)動點(diǎn)E,F(xiàn)滿足BE=CF時(shí).
(1)寫出所有以點(diǎn)E或F為頂點(diǎn)的全等三角形;(不得添加輔助線)
(2)求證:AE⊥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC ;
(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com