【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(2,0),B(5,0),過(guò)點(diǎn)D(0,)作y軸的垂線DP交圖象于E、F.
(1)求b、c的值和拋物線的頂點(diǎn)M的坐標(biāo);
(2)求證:四邊形OAFE是平行四邊形;
(3)將拋物線向左平移的過(guò)程中,拋物線的頂點(diǎn)記為M′,直線DP與拋物線的左交點(diǎn)為E′,連接OM′,OE′,當(dāng)OE′+OM′的值最小時(shí)求直線OE′的解析式.
【答案】(1)b=7,c=﹣10,M的坐標(biāo)為(,);(2)見(jiàn)解析;(3)OE′的解析式為y=﹣x
【解析】
(1)由拋物線的交點(diǎn)式可直接得到拋物線的解析式,從而可求得b、c的值,然后利用配方法可求得頂點(diǎn)M的坐標(biāo);
(2)先求得點(diǎn)E和點(diǎn)F的坐標(biāo),從而可得到EF=OA,然后依據(jù)平行四邊形的判定定理進(jìn)行證明即可;
(3)設(shè)拋物線向左平移m個(gè)單位時(shí),則M′(﹣m,),E′(﹣m,),作點(diǎn)M′關(guān)于x軸的對(duì)稱點(diǎn)M″,則點(diǎn)M″(﹣m,﹣),當(dāng)點(diǎn)E′、O、M″在一條直線上時(shí),OE′+OM′有最小值,然后再依據(jù)E′M″的圖象為正比例函數(shù)圖象列出關(guān)于m的比例式,從而可求得m的值,然后可求得OE′的解析式.
解:(1)拋物線解析式為y=﹣(x﹣2)(x﹣5),即y=﹣x2+7x﹣10,
∴b=7,c=﹣10,
∵y=﹣x2+7x﹣10=﹣(x﹣)2+,
∴頂點(diǎn)M的坐標(biāo)為(,);
(2)證明:當(dāng)y=時(shí),﹣(x﹣)2+=,
解得x1=,x2=,
則E(,),F(,),
∵EF=﹣=2,
而OA=2,
∴EF=OA,
∵EF∥OA,
∴四邊形OAFE是平行四邊形;
(3)設(shè)拋物線向左平移m個(gè)單位時(shí),OE′+OM′有最小值,則M′(﹣m,),E′(﹣m,),作點(diǎn)M′關(guān)于x軸的對(duì)稱點(diǎn)M″,則點(diǎn)M″(﹣m,﹣).
由軸對(duì)稱的性質(zhì)可知:OM′=OM″,則OE′+OM′=OE′+OM″.
∴當(dāng)點(diǎn)E′、O、M″在一條直線上時(shí),OE′+OM′有最小值.
∴,
解得:m=.
∴k==﹣.
∴OE′的解析式為y=﹣x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)若a=,點(diǎn)M是拋物線上一動(dòng)點(diǎn),若滿足∠MAO不大于45°,求點(diǎn)M的橫坐標(biāo)m的取值范圍.
(3)經(jīng)過(guò)點(diǎn)B的直線l:y=kx+b與y軸正半軸交于點(diǎn)C.與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,且CD=4BC.若點(diǎn)P在拋物線對(duì)稱軸上,點(diǎn)Q在拋物線上,以點(diǎn)B,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y軸的正半軸上,點(diǎn)B在雙曲線(x<0)上,點(diǎn)D在雙曲線(x>0)上,點(diǎn)D的坐標(biāo)是 (3,3)
(1)求k的值;
(2)求點(diǎn)A和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于點(diǎn),交軸正半軸于點(diǎn),與過(guò)點(diǎn)的直線相交于另一點(diǎn),過(guò)點(diǎn)作軸,垂足為.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)在線段上(不與點(diǎn),重合),過(guò)作軸,交直線于,交拋物線于點(diǎn),于點(diǎn),求的最大值;
(3)若是軸正半軸上的一動(dòng)點(diǎn),設(shè)的長(zhǎng)為.是否存在,使以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分別為BC,AC,AB邊上的點(diǎn),BF=3AF,∠DFE=90°,若△BDF與△FEA的面積比為3:2,則△CDE與△DEF的面積比為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,甲、乙兩車同時(shí)從A地出發(fā),分別勻速前往B地與C地,甲車到達(dá)B地休息一段時(shí)間后原速返回,乙車到達(dá)C地后立即返回.兩車恰好同時(shí)返回A地.圖②是兩車各自行駛的路程y(千米)與出發(fā)時(shí)間x(時(shí))之間的函數(shù)圖象.根據(jù)圖象解答下列問(wèn)題:
(1)甲車到達(dá)B地休息了 時(shí);
(2)求甲車返回A地途中y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時(shí),兩車與A地的路程恰好相同.(不考慮兩車同在A地的情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016青海省西寧市)如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于點(diǎn),與軸交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)為拋物線的頂點(diǎn),在軸上是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)如圖2,位于軸右側(cè)且垂直于軸的動(dòng)直線沿軸正方向從運(yùn)動(dòng)到(不含點(diǎn)和點(diǎn)),分別與拋物線、直線以及軸交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于點(diǎn)D,以點(diǎn)D為圓心,DA為半徑的圓與AB相交于點(diǎn)E,與CD交于點(diǎn)F.
(1)求證:BC是⊙D的切線;
(2)若EF∥BC,且BC=6,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com