精英家教網 > 初中數學 > 題目詳情

【題目】某汽車銷售公司11月份銷售某廠家的汽車,在一定范圍內,每部汽車的進價與銷售量有如下關系:若當月僅售出部汽車,則該部汽車的進價為萬元,每多售出部,所有售出的汽車的進價均降低萬元/.月底廠家再根據銷售量返利給銷售公司:銷售量在部以內(),每部返利萬元;銷售量在部以上,每部返利萬元.

(1)若該公司當月售出部汽車,則每部汽車的進價為 萬元;

(2)若汽車的售價為萬元/部,該公司計劃當月盈利萬元,則需售出多少部汽車? (盈利=銷售利潤+返利)

【答案】(1) 萬元; (2) 需售出部汽車

【解析】

1)題干要求每部汽車的進價,根據題意列出算式即可求值.

2)首先設需售出部汽車,分情況對時以及時列出一元二次方程,并求出其值即可.

解:(1)

(萬元)

(2)設需售出部汽車,則每部汽車的銷售利潤為萬元.

時,根據題意得:

整理得:,

解得: (舍去),

,

舍去;

時,根據題意得:

整理得:,

解得: (舍去)

答:需售出部汽車

2)解法二:設需售出部汽車,

,當月盈利為:萬元萬元

,

每部汽車的銷售利潤為萬元,且每部返利萬元.

根據題意得:

整理得:,

,

解得: (舍去),

答:需售出部汽車.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形中,點從點出發(fā),沿著矩形的邊順時針方向運動一周回到點,則點圍成的圖形面積與點運動路程之間形成的函數關系式的大致圖象是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知BC是⊙O的直徑,點DBC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,燈桿AB與墻MN的距離為18米,小麗在離燈桿(底部)9米的D處測得其影長DE3m,設小麗身高為1.6m.

(1)求燈桿AB的高度;

(2)小麗再向墻走7米,她的影子能否完全落在地面上?若能,求此時的影長;若不能,求落在墻上的影長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小東從地出發(fā)以某一速度向地走去,同時小明從地出發(fā)以另一速度向地而行,如圖所示,圖中的線段分別表示小東、小明離地的距離(千米)與所用時間(小時)的關系.

1)寫出、的關系式:_______,_______;

2)試用文字說明:交點所表示的實際意義.

3)試求出、兩地之間的距離.

4)求出小東、小明相距4千米時出發(fā)的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若平面直角坐標系內的點M滿足橫、縱坐標都為整數,則把點M叫做整點.例如:P1,0)、Q2,﹣2)都是整點.拋物線ymx24mx+4m2m0)與x軸交于點A、B兩點,若該拋物線在AB之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是(  )

A. m1B. m≤1C. 1m≤2D. 1m2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,⊙O的半徑為4,點A是⊙O上一點,直線l過點A;P是⊙O上的一個動點(不與點A重合),過點PPBl于點B,交⊙O于點E,直徑PD延長線交直線l于點F,點A的中點.

(1)求證:直線l是⊙O的切線;

(2)若PA=6,求PB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,兩點,過點的切線交射線于點

1)求證:

2)當的中點時,

①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;

②若,且,則_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗,小紅將這五位名人簡介分別寫在五張完全相同的知識卡片上.

1)小哲從中隨機抽取一張,求卡片上介紹的人物是唐太宗的概率;

2)用樹狀圖或列表法求小哲從中隨機抽取兩張,卡片上介紹的人物均是漢朝以后出生的概率.(注:唐太宗、宋太祖、成吉思汗均是漢朝以后出生)

查看答案和解析>>

同步練習冊答案