【題目】如圖,在ABC中,AB=AC,OABC的外接圓,AEABBC于點(diǎn)D,交⊙O于點(diǎn)E,FDA的延長(zhǎng)線上,且AF=AD.若AF=3,tanABD=,求⊙O的直徑.

【答案】

【解析】試題分析:如圖,連接BE.利用等腰三角形三線合一的性質(zhì)得到BF=BD;然后根據(jù)圓周角定理推知∠FBA=ABC=C=E,BE是⊙O的直徑.利用銳角三角函數(shù)的定義可以來(lái)求BE的長(zhǎng)度.

試題解析:

如圖,連接BE

AF=AD,ABEF,

BF=BD.是直徑

AB=AC

∴∠FBA=ABC=C=E

tanABD=,

tanE=tanFBA=

RtABF中,∠BAF=90°

tanFBA== ,AF=3,

AB=4

∵∠BAE=90°,

BE是⊙O的直徑.

tanE=tanFBA= ,AB=4

∴設(shè)AB=3xAE=4x,

BE=5x

3x=4,

BE=5x=

即⊙O的直徑是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種油菜籽在相同條件下的發(fā)芽實(shí)驗(yàn)結(jié)果如表:

1a ,b ;

2)這種油菜籽發(fā)芽的概率估計(jì)值是多少?請(qǐng)簡(jiǎn)要說(shuō)明理由;

3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10000粒該種油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸與軸交于點(diǎn)E,直線CE交拋物線于點(diǎn)F(異于點(diǎn)C),直線CD軸交于點(diǎn)G

1)如圖①,求直線CE的解析式和頂點(diǎn)D的坐標(biāo);

2)如圖①,點(diǎn)P為直線CF上方拋物線上一點(diǎn),連接PC、PF,當(dāng)PCF的面積最大時(shí),點(diǎn)M是過(guò)P垂直于軸的直線l上一點(diǎn),點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),求的最小值;

3)如圖②,過(guò)點(diǎn)D軸于點(diǎn)I,將GDI沿射線GB方向平移至處,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到一定度數(shù)時(shí),點(diǎn)會(huì)與點(diǎn)I重合,記旋轉(zhuǎn)過(guò)程中的,若在整個(gè)旋轉(zhuǎn)過(guò)程中,直線G’’I’’分別交x軸和直線GD于點(diǎn)K、L兩點(diǎn),是否存在這樣的K、L,使GKL為以∠LGK為底角的等腰三角形?若存在,求此時(shí)GL的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中只裝有2個(gè)白色圍棋子和1個(gè)黑色圍棋子,圍棋子除顏色外其余均相同.從這個(gè)盒子中隨機(jī)地摸出1個(gè)圍棋子,記下顏色后放回,攪勻后再隨機(jī)地摸出1個(gè)圍棋子記下顏色.請(qǐng)用畫樹(shù)狀圖(或列表)的方法,求兩次摸出的圍棋子顏色都是白色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48 ;

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩根木條,一根長(zhǎng)20cm,另一根長(zhǎng)24cm,將它們一端重合且放在同一條直線上,此時(shí)兩根木條的中點(diǎn)之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014河南21題)某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.

1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);

2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍.設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?

3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下降元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái).若商店保持兩種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰ABC,AB=BC,以AB為直徑的圓交AC于點(diǎn)D,過(guò)點(diǎn)D的⊙O的切線交BC于點(diǎn)E,若CD=5,CE=4,則⊙O的半徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3),B(﹣3,1),C(﹣13).

1)請(qǐng)按下列要求畫圖:

平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(﹣4,﹣3),請(qǐng)畫出平移后的△A1B1C1;

A2B2C2與△ABC關(guān)于原點(diǎn)O中心對(duì)稱,畫出△A2B2C2

2)若將△A1B1C1繞點(diǎn)M旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心M點(diǎn)的坐標(biāo)   

查看答案和解析>>

同步練習(xí)冊(cè)答案