【題目】分類討論是一種重要的數(shù)學方法,如在化簡|a|時,可以這樣分類:當a>0時,|a|=a;當a=0時,|a|=0;當a<0時,|a|=﹣a.用這種方法解決下列問題:

(1)a=5時,求的值.

(2)a=﹣2時,求的值.

(3)若有理數(shù)a不等于零,求的值.

(4)若有理數(shù)a、b均不等于零,試求+的值.

【答案】(1)1;(2)-1;(3)1或-1;(4)2或-2或0

【解析】

(1)直接將a=5代入求出答案;
(2)直接將a=-2代入求出答案;
(3)分別利用a>0a<0分析得出答案;
(4)分別利用當a,b是同正數(shù)或當a,b是同負數(shù)或當a,b是異號分析得出答案.

解:時,;

時,;

若有理數(shù)不等于零,當時,,當時,;

若有理數(shù)均不等于零,當,是同正數(shù),

,是同負數(shù),,

,是異號,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小王購買了一套一居室,他準備將房子的地面鋪上地磚,地面結構如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問題:

(1)用含 的代數(shù)式表示地面的總面積 ;

(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費用為 元,那么小王鋪地磚的總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的有(寫出所有正確結論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當△ABP≌△ADN時,BP=4 ﹣4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為﹣1和3,則下列結論正確的是( 。

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當a= 時,△ABD是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)可以表示為兩個連續(xù)奇數(shù)的平方差,那么稱該正整數(shù)為和諧數(shù)如(8=3212,16=5232,即8,16均為和諧數(shù)),在不超過2017的正整數(shù)中,所有的和諧數(shù)之和為(  )

A. 255054 B. 255064 C. 250554 D. 255024

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們,我們很熟悉這樣的算式:,其實,數(shù)學不僅非常美妙,而且魅力無窮.請你欣賞下列一組等式:

⑤……

(1)寫出第個等式:

(2)根據(jù)上述規(guī)律,寫出第個等式:

(3)觀察比較,并大膽猜想:

(4)根據(jù)(2)的規(guī)律計算(寫出計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.
(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?
(2)設每月用水量為x噸,應交水費為y元,請寫出y與x之間的函數(shù)關系式;
(3)小明家5月份用水26噸,則他家應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=2x2﹣4x﹣1的圖象與x軸交于A(x1 , 0)、B(x2 , 0)兩點,則 的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組織的義務植樹活動中,甲、乙兩組各四名同學的植樹棵數(shù)如下,甲組:9,9,11,10;乙組:9,8,9,10;分別從甲、乙兩組中隨機選取一名同學,則這兩名同學的植樹總棵數(shù)為19的概率

查看答案和解析>>

同步練習冊答案