【題目】如圖,⊙O是以原點為圓心,2為半徑的圓,點P是直線y=﹣x+4上的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為 .
【答案】2
【解析】解:連結(jié)OP,OQ,作OH⊥AB于H,如圖,
當x=0時,y=﹣x+4=4,則B(0,4);當y=0時,﹣x+4=0,解得x=4,則A(4,0),
∵OA=OB,
∴△OAB為等腰直角三角形,
∴AB= OA=4 ,
∵OH⊥AB,
∴OH= AB=2 ,
∵PQ為⊙O的切線,
∴OQ⊥PQ,
在Rt△POQ中,PQ= = ,
∴當OP最小時,PQ最小,
而OP=OH時,OP最小,
∴切線長PQ的最小值= =2,
所以答案是:2.
【考點精析】認真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新世紀廣場進貨員預(yù)測一種應(yīng)季襯衫能暢銷市場,就用8萬元購進這種襯衫,面市后果然供不應(yīng)求,商場又用17.6萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了4元,商場銷售這種襯衫時每件定價都是58元,最后剩下的150件按八折銷售,很快售完,在這兩筆生意中,商場共贏利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,將坐標是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的點用線段依次連接起來形成一個圖案Ⅰ.
(1)作出該圖案關(guān)于y軸對稱的圖案Ⅱ;
(2)將所得到的圖案Ⅱ沿x軸向上翻折180°后得到一個新圖案Ⅲ,試寫出它的各頂點的坐標;
(3)觀察圖案Ⅰ與圖案Ⅲ,比較各頂點的坐標和圖案位置,你能得到什么結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,連接在一起的兩個等邊三角形的邊長都為2cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環(huán)移動.當微型機器人移動了2018cm后,它停在了點_____上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在4×8的矩形網(wǎng)格中,每個小正方形的邊長都為1,△ABC的三個頂點都在格點上,則tan∠BAC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把兩個大小相等,形狀相同的兩個三角形稱之為全等三角形,如果兩個三角形僅僅是形狀相同,我們可以稱之為相似三角形,如圖①△ABC與△DEF形狀相同,我們就可以說△ABC 與△DEF相似,記作△ABC∽△DEF,點A與點D、點B與點E、點C與點F分別是對應(yīng)點。下面我們就相似三角形的知識進行一些簡單的探索。
(1)觀察下列圖②兩組圖形,相似的一組是 。
(2)如圖③,小明用一張紙遮住了3個三角形的一部分,你是可以畫出這3個三角形的。
提出問題:①如圖,如果∠A=∠C,∠B=∠D,AB=CD,那么第一個三角形與第二個三角形全等嗎?你的判斷是 ,(填“是”或“否”)判斷的依據(jù)是 。
②如圖,如果∠A=∠E,∠B=∠F,2AB=EF,那么第一個三角形與第三個三角形相似嗎?你的判斷是 ,(填“是”或“否”)
(3)由(1)、(2)你可以得出的結(jié)論是:有 個角分別相等的兩個三角形相似。
(4)用(3)的結(jié)論解決下面兩個問題.
①已知:如圖,AB∥CD。AD與BC相交于點O,試說明△ABO∽△DCO。
②已知:如圖,在△ABC中,點D、E、F分別在邊BC、AB、AC上,∠B=∠C=∠EDF,試說明△BDE∽△CFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( )
A.a>0
B.c>0
C.
D.b2+4ac>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com