【題目】如圖所示,在中,,邊上的任意一點(diǎn),作的延長(zhǎng)線于點(diǎn),連接,于點(diǎn)

(1).求

(2)求證:

【答案】118;(2)見解析.

【解析】

1)由∠ABC=90°、AB=BC知∠BCA=45°,根據(jù)∠ACE=75°得∠BCE=30°,再證∠BAD=ECD=30°,從而得AB=2BF=6,根據(jù)三角形面積公式可得;

2)在AF上截取AP=CE,連接BP,先證△ABP≌△CBEBP=BE,即可證明

解:(1)∵∠ABC=90°,AB=BC,

∴∠BAC=BCA=45°,

∵∠ACE=75°,

∴∠BCE=30°,

CEAE,

∴∠DEC=ABC=90°,

∵∠ADB=CDE,

∴∠BAD=ECD=30°,

BF=3,且BFAE

AB=2BF=6,則SABC=ABBC=×6×6=18;

2)如圖,在AF上截取AP=CE,連接BP,

CEAE,

∴∠DEC=ABC=90°,

∵∠ADB=CDE

∴∠BAD=ECD,

在△ABP和△CBE中,

∴△ABP≌△CBESAS),

BP=BE,∠ABP=∠CBE,

∠PBE=90°∠EPB=45°,

∠APB=135°,

∠CEB=∠APB=135°

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項(xiàng),把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來(lái)就是 類似地,2所示的算籌圖我們可以用方程組形式表述為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)幾何的一個(gè)重要方法就是要學(xué)會(huì)抓住基本圖形,讓我們來(lái)做一次研究性學(xué)習(xí).

1)如圖①所示的圖形,像我們常見的學(xué)習(xí)用品一圓規(guī),我們常把這樣的圖形叫做規(guī)形圖.請(qǐng)你觀察規(guī)形圖,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說明理由:

2)如圖②,若ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點(diǎn)O,試探究∠BOC與∠A的關(guān)系;

3)如圖③,若ABC中,∠ABO=ABC,∠ACO=ACB,且BO、CO相交于點(diǎn)O,請(qǐng)直接寫出∠BOC與∠A的關(guān)系式為    _

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么ACD的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售一種品牌電腦,四月份營(yíng)業(yè)額為萬(wàn)元.為擴(kuò)大銷售,在五月份將每臺(tái)電腦按原價(jià)折銷售,銷售量比四月份增加臺(tái),營(yíng)業(yè)額比四月份多了千元.

求四月份每臺(tái)電腦的售價(jià).

六月份該商店又推出一種團(tuán)購(gòu)促銷活動(dòng),若購(gòu)買不超過臺(tái),每臺(tái)按原價(jià)銷售:若超過臺(tái),超過的部分折銷售,要想在六月份團(tuán)購(gòu)比五月份團(tuán)購(gòu)更合算,則至少要買多少臺(tái)電腦?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一棵樹CD10m高處的B點(diǎn)有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,EB=EC,AE的延長(zhǎng)線交BCD,則圖中全等的三角形共有_____對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,BC=20 cm,點(diǎn)P,Q,M,N分別從點(diǎn)A,B,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),四個(gè)點(diǎn)的運(yùn)動(dòng)均停止.已知在相同時(shí)間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm.

(1)當(dāng)x為何值時(shí),以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊能構(gòu)成一個(gè)三角形?

(2)當(dāng)x為何值時(shí),以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=x+2的圖象分別與坐標(biāo)軸相交于A、B兩點(diǎn)(如圖所示),與反比例函數(shù)(x>0)的圖象相交于C點(diǎn).

(1)寫出A、B兩點(diǎn)的坐標(biāo);

(2)作CDx軸,垂足為D,如果OB是ACD的中位線,求反比例函數(shù)(x>0)的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案