【題目】如圖,以ABC的邊AC為直徑作⊙OAB、BCED,D恰為BC的中點(diǎn),過(guò)C作⊙O的切線,與AB的延長(zhǎng)線交于F,過(guò)BBMAF,交CFM

1)求證:MBMC;

2)若MF5,MB3,求⊙O的半徑及弦AE的長(zhǎng).

【答案】1)見(jiàn)解析;(2EA

【解析】

1)連接AD,根據(jù)垂直平分線的判定和切線的性質(zhì)證明即可;

2)根據(jù)相似三角形的判定和性質(zhì)解答即可.

1)證明:連接AD,∵AC是⊙O的直徑,

∴∠ADC90°,

ADB90°,又DBC的中點(diǎn),

AD是線段BC的垂直平分線,

ABAC,∠ABC=∠ACB,

BMAF,CF是⊙O的切線,

∴∠ABM=∠ACM90°

∴∠MBC=∠MCB,MBMC;

2)∵MF5,MB3,

FB4,由上知MC3,FC8,

∵∠MBF=∠ACF90°,∠BFM=∠CFA,

∴△FBM∽△FCA

,

,

解得:CA6,⊙O的半徑OA3,

連結(jié)CE,則∠AEC90°,由上知,∠F=∠ACE,則EAC∽△BMF,

解得:EA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線l,則下列結(jié)論:abc0a+b+c0;a+c0;a+b0,正確的是( 。

A. ①②④B. ②④C. ①③D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年928日,某中學(xué)初三年級(jí)同學(xué)進(jìn)行了中招體育模擬考試,王老師為了更加科學(xué)有效地制定后期訓(xùn)練計(jì)劃,對(duì)本班同學(xué)的體考成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制了如圖的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中體育成績(jī)共分為五個(gè)等級(jí):A46分﹣50分;B41分﹣45C36分﹣40分;D31分﹣35分;E30分及以下,請(qǐng)根據(jù)圖中所給的信息完成下列問(wèn)題:

1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整:并計(jì)算扇形統(tǒng)計(jì)圖中E等級(jí)所對(duì)應(yīng)的圓心角度數(shù)為   

2)該班A等級(jí)中共有5名同學(xué)獲得滿分,其中男同學(xué)只有2名,現(xiàn)從這5名同學(xué)中任選2名同學(xué)在班上進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用樹(shù)狀圖或列表法求恰好選到一名男同學(xué)和一名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙的內(nèi)切圓,切點(diǎn)分別為、、 ,

)求的度數(shù).

)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線yax2+bx+c的對(duì)稱軸為直線x1,且過(guò)點(diǎn)(30),下列結(jié)論:abc0;ab+c0③2a+b0;b24ac0;正確的有( 。﹤(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)Cx軸于E(4,0).

(1)寫(xiě)出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PFx軸于F,設(shè)四邊形OFPC的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Qx軸的正半軸上運(yùn)動(dòng),過(guò)Qy軸的平行線,交直線lM,交拋物線于N,連接CN,將CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=CB=2,以BC為邊向外作正方形BCDE,動(dòng)點(diǎn)MA點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著A—C—D的路線向D點(diǎn)勻速運(yùn)動(dòng)(M不與AD重合);過(guò)點(diǎn)M作直線lADl與路線A—B—D相交于點(diǎn)N,設(shè)運(yùn)動(dòng)時(shí)間為t秒:

(1)當(dāng)點(diǎn)MAC上時(shí),BN=_____.(用含t的代數(shù)式表示)

(2)過(guò)NNFED,垂足為F,矩形MDFN與△ABD重疊部分的面積為S,求S的最大值

(3)當(dāng)點(diǎn)MCD上時(shí)(含點(diǎn)C),是否存在點(diǎn)M,使△DEN為等腰三角形?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府規(guī)定:若本市企業(yè)按生產(chǎn)成本價(jià)提供產(chǎn)品給大學(xué)生銷售,則政府給該企業(yè)補(bǔ)償補(bǔ)償額批發(fā)價(jià)生產(chǎn)成本價(jià)銷售量大學(xué)生小明投資銷售本市企業(yè)生產(chǎn)的一種新型節(jié)能燈,調(diào)查發(fā)現(xiàn),每月銷售量與銷售單價(jià)之間的關(guān)系近似滿足一次函數(shù):已知這種節(jié)能燈批發(fā)價(jià)為每件12元,設(shè)它的生產(chǎn)成本價(jià)為每件m

(1)當(dāng)時(shí).

①若第一個(gè)月的銷售單價(jià)定為20元,則第一個(gè)月政府要給該企業(yè)補(bǔ)償多少元?

②設(shè)所獲得的利潤(rùn)為,當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)物價(jià)部門(mén)規(guī)定,這種節(jié)能燈的銷售單價(jià)不得超過(guò)30今年三月小明獲得贏利,此時(shí)政府給該企業(yè)補(bǔ)償了920元,若m,x都是正整數(shù),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案