【題目】如圖,在ABC中,點(diǎn)DE分別在AB,AC邊上,DEBC,AD2BD,BC6

1)求DE的長(zhǎng);

2)連接CD,若∠ACD=∠B,求CD的長(zhǎng).

【答案】(1)DE4,(2CD2

【解析】

1)設(shè)AD2xBDx,易證△ADE∽△ABC,利用相似三角形的性質(zhì)可求出DE的長(zhǎng)度;

2)證明△ADE∽△ACD,利用相似三角形的性質(zhì)即可求出得出,從而可求出CD的長(zhǎng)度.

解:設(shè)AD2xBDx,

AB3x,

DEBC,

∴△ADE∽△ABC,

,

DE4

2)∵∠ACD=∠B,

ADE=∠B

∴∠ADE=∠ACD,

∵∠A=∠A,

∴△ADE∽△ACD

,

設(shè)AE2y,AC3y

,

ADy,

,

CD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y2x+6與反比例函數(shù)的圖象交于點(diǎn)A1,m),與x軸交于點(diǎn)B,平行于x軸的直線yn0n6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM

1)求m的值和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出當(dāng)x0時(shí),不等式2x+6-0的解集;

3)當(dāng)n為何值時(shí),BMN的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知斜坡BQ的坡度i12.4,坡長(zhǎng)BQ13米,在斜坡BQ上有一棵銀杏樹(shù)PQ,小李在A處測(cè)得樹(shù)頂P的仰角為α,測(cè)得水平距離AB8米.若tanα0.75,點(diǎn)A,BP,Q在同一平面上,PQAB于點(diǎn)C,則銀杏樹(shù)PQ的高度為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BEACD,交⊙OE,過(guò)E⊙O切線EFBA的延長(zhǎng)線于F.

(1)如圖1,求證:EF∥AC;

(2)如圖2,OP⊥AOBE于點(diǎn)P,交FE的延長(zhǎng)線于點(diǎn)M.求證:△PME是等腰三角形;

(3)如圖3,在(2)的條件下:EG⊥ABH點(diǎn),交⊙OG點(diǎn),交ACQ點(diǎn),若sinF=,EQ=5,求PM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)Px軸上運(yùn)動(dòng),過(guò)點(diǎn)PPMx軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式和直線BC的解析式;

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),若CMN是以MN為腰的等腰直角三角形時(shí),求m的值;

(3)當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是以OC為一邊的平行四邊形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與直線yx+m交于x軸上一點(diǎn)A(﹣10),二次函數(shù)圖象的頂點(diǎn)C1,﹣4),若二次函數(shù)的圖象與x軸交于另一點(diǎn)B,與直線yx+m交于另一點(diǎn)D,求點(diǎn)B與點(diǎn)D之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yx2+bx+3x軸交于點(diǎn)A10

1)求b的值;

2)若拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)B,與y軸的交點(diǎn)為C,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,等邊△ABC中,點(diǎn)DBC上任一點(diǎn),以AD為邊作∠ADE=ADF=60°,分別交AC,AB于點(diǎn)E,F.

(1)求證:AD2=AEAC.

(2)已知BC=2,設(shè)BD的長(zhǎng)為x,AF的長(zhǎng)為y.

①求y關(guān)于x的函數(shù)表達(dá)式;

②若四邊形AFDE外接圓直徑為,x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長(zhǎng)線交于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)BE=3,CE=3,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案