【題目】如下圖,在平面直角坐標系中,ABO繞點A順時針旋轉(zhuǎn)到AB1C1的位置,BO分別落在點B1、C1,B1x軸上,再將AB1C1繞點B1順時針旋轉(zhuǎn)到A1B1C2的位置,C2x軸上,A1B1C2繞點C2順時針旋轉(zhuǎn)到A2B2C2的位置,A2x軸上,依次進行下去….若點A(,0),B(0,2),B2019的坐標為_____

【答案】6058,0

【解析】

首先根據(jù)已知求出三角形三邊長度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…每偶數(shù)之間的B相差6個單位長度,根據(jù)這個規(guī)律可以求得B2019的坐標.

解:∵A,0),B02),
RtAOB中,AB=,
OA+AB1+B1C2=+2+=6,
B2的橫坐標為:6,且B2C2=2,即B262),
B4的橫坐標為:2×6=12,
∴點B2019的橫坐標為:2018÷2×6++=6058,點B2019的縱坐標為:0,
B2019的坐標是(60580).
故答案為:(6058,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形, GBC上(除端點外)的任意一點,DE⊥AG于點E,BF∥DE,交AG于點F.給出以下結(jié)論:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.

圖1 圖2 圖3

(1)思路梳理

將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;

(2)類比引申

如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

(3)聯(lián)想拓展

如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB

1)求∠ACE的度數(shù).

2)若CDAB于點D,∠CDF=75°,求證:△CFD是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知中,厘米,分別從點、點同時出發(fā),沿三角形的邊運動,已知點的速度是1厘米/秒的速度,點的速度是2厘米/秒,當點第一次到達點時,、同時停止運動.

1、同時運動幾秒后,兩點重合?

2同時運動幾秒后,可得等邊三角形?

3、邊上運動時,能否得到以為底邊的等腰,如果存在,請求出此時運動的時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O是線段AD的中點,分別以AODO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接ACBD,相交于點E,連接BC

1)證明:⊿ABC ≌ ⊿DCB;

2)求∠AEB的大小.

3)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB△OCD不能重疊),求∠AEB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD連接EB,EC,DB添加一個條件不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為1520,那么P到矩形兩條對角線ACBD的距離之和是(  )

A.6B.12C.24D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于三個數(shù)a,b,c,用max{a,bc}表示這三個數(shù)中最大數(shù),例如:max{-2,10}=1,max

解決問題:

1)填空:max{12,3}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;

2)如果max{2x+2,-3x-7}=5,求x的值;

3)如圖,在同一坐標系中畫出了三個一次函數(shù)的圖象:y=-x-3y=x-1y=3x-3請觀察這三個函數(shù)的圖象,

①在圖中畫出max{-x-3,x-1,3x-3}對應(yīng)的圖象(加粗);

max{-x-3,x-13x-3}的最小值為______

查看答案和解析>>

同步練習(xí)冊答案