【題目】某經(jīng)銷(xiāo)商經(jīng)銷(xiāo)的學(xué)生用品,他以每件280元的價(jià)格購(gòu)進(jìn)某種型號(hào)的學(xué)習(xí)機(jī),以每件360元的售價(jià)銷(xiāo)售時(shí),每月可售出60個(gè),為了擴(kuò)大銷(xiāo)售,該經(jīng)銷(xiāo)商采取降價(jià)的方式促銷(xiāo),在銷(xiāo)售中發(fā)現(xiàn),如果每個(gè)學(xué)習(xí)機(jī)降價(jià)1元,那么每月就可以多售出5個(gè).
降價(jià)前銷(xiāo)售這種學(xué)習(xí)機(jī)每月的利潤(rùn)是多少元?
經(jīng)銷(xiāo)商銷(xiāo)售這種學(xué)習(xí)機(jī)每月的利潤(rùn)要達(dá)到7200元,且盡可能讓利于顧客,求每個(gè)學(xué)習(xí)機(jī)應(yīng)降價(jià)多少元?
在的銷(xiāo)售中,銷(xiāo)量可好,經(jīng)銷(xiāo)商又開(kāi)始漲價(jià),漲價(jià)后每月銷(xiāo)售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元嗎?若能,請(qǐng)求出漲多少元;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)4800元;(2)降價(jià)60元;(3)應(yīng)漲26元每月銷(xiāo)售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元.
【解析】
根據(jù)總利潤(rùn)=單個(gè)利潤(rùn)×數(shù)量列出算式,計(jì)算即可求出值;
設(shè)每個(gè)學(xué)習(xí)機(jī)應(yīng)降價(jià)x元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;
設(shè)應(yīng)漲y元每月銷(xiāo)售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果.
解:由題意得:元,
則降價(jià)前商場(chǎng)每月銷(xiāo)售學(xué)習(xí)機(jī)的利潤(rùn)是4800元;
設(shè)每個(gè)學(xué)習(xí)機(jī)應(yīng)降價(jià)x元,
由題意得:,
解得:或,
由題意盡可能讓利于顧客,舍去,即,
則每個(gè)學(xué)習(xí)機(jī)應(yīng)降價(jià)60元;
設(shè)應(yīng)漲y元每月銷(xiāo)售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元,
根據(jù)題意得:,
方程整理得:,
解得:,
則應(yīng)漲26元每月銷(xiāo)售這種學(xué)習(xí)機(jī)的利潤(rùn)能達(dá)到10580元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱(chēng)為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個(gè)動(dòng)點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長(zhǎng)取最小值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小文同學(xué)統(tǒng)計(jì)了某小區(qū)部分居民每周使用共享單車(chē)的時(shí)間,并繪制了統(tǒng)計(jì)圖,如圖所示.下面有四個(gè)推斷:
①小文此次一共調(diào)查了位小區(qū)居民
②每周使用時(shí)間不足分鐘的人數(shù)多于分鐘的人數(shù)
③每周使用時(shí)間超過(guò)分鐘的人數(shù)超過(guò)調(diào)查總?cè)藬?shù)的一半
④每周使用時(shí)間在分鐘的人數(shù)最多
根據(jù)圖中信息,上述說(shuō)法中正確的是( )
A.①④B.①③C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC≌△EDC.
(1)若DE∥BC(如圖1),判斷△ABC的形狀并說(shuō)明理由.
(2)連結(jié)BE,交AC于F,點(diǎn)H是CE上的點(diǎn),且CH=CF,連結(jié)DH交BE于K(如圖2).求證:∠DKF=∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是矩形ABCD的對(duì)角線,,將沿射線BD方向平移到的位置,使為BD中點(diǎn),連接,,,,如圖.
求證:四邊形是菱形;
四邊形的周長(zhǎng)為______;
將四邊形沿它的兩條對(duì)角線剪開(kāi),用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫(xiě)出所有可能拼成的矩形周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016江蘇省連云港市)環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過(guò)最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以?xún)?nèi)(含15天)排污達(dá)標(biāo).整改過(guò)程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時(shí)間x成反比例關(guān)系.
(1)求整改過(guò)程中硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以?xún)?nèi)不超過(guò)最高允許的1.0mg/L?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,O為∠BAC,∠ACD平分線的交點(diǎn),OE⊥AC交AC于E,AB與CD之間的距離等于4.8,OA=3,OC=4,求線段AC為(_______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí)
①請(qǐng)說(shuō)明△ADC≌△CEB的理由;
②請(qǐng)說(shuō)明DE=AD+BE的理由;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接在橫線上寫(xiě)出這個(gè)等量關(guān)系:__________;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接在橫線上寫(xiě)出這個(gè)等量關(guān)系:__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com