【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結果精確到0.1米.參考數(shù)據: ≈1.414, ≈1.732)
【答案】(1)5;(2)2.7m.
【解析】試題分析:(1)過B作DE的垂線,設垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據CD=CG+GE-DE即可求出宣傳牌的高度.
試題解析:(1)過B作BG⊥DE于G,
Rt△ABH中,i=tan∠BAH=,
∴∠BAH=30°,
∴BH=AB=5;
(2)∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四邊形BHEG是矩形.
∵由(1)得:BH=5,AH=5,
∴BG=AH+AE=5+15,
Rt△BGC中,∠CBG=45°,
∴CG=BG=5+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=AE=15.
∴CD=CG+GE-DE=5+15+5-15=20-10≈2.7m.
答:宣傳牌CD高約2.7米.
科目:初中數(shù)學 來源: 題型:
【題目】一輛貨車從A地開往B地,一輛小汽車從B地開往A地.同時出發(fā),都勻速行駛,各自到達終點后停止.設貨車、小汽車之間的距離為s(千米),貨車行駛的時間為t(小時),S與t之間的函數(shù)關系如圖所示.下列說法中正確的有( )
①A,B兩地相距60千米:
②出發(fā)1小時,貨車與小汽車相遇;
③出發(fā)1.5小時,小汽車比貨車多行駛了60千米;
④小汽車的速度是貨車速度的2倍.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉得到△C1OD1,旋轉角為θ(0°<θ<90°),連接AC1、BD1,AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.
①求證:△AOC1≌△BOD1.
②請直接寫出AC1 與BD1的位置關系.
(2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,設AC1=kBD1.判斷AC1與BD1的位置關系,說明理由,并求出k的值.
(3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1,設AC1=kBD1.直接寫出k的值和AC12+(kDD1)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某風景區(qū)門票價格如圖所示,黃岡赤壁旅游公司有甲、乙兩個旅游團隊,計劃在“五一”小黃金周期間到該景點游玩.兩團隊游客人數(shù)之和為120人,乙團隊人數(shù)不超過50人,設甲團隊人數(shù)為x人.如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關于x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若甲團隊人數(shù)不超過100人,請說明甲、乙兩團隊聯(lián)合購票比分別購票最多可可節(jié)約多少錢;
(3)“五一”小黃金周之后,該風景區(qū)對門票價格作了如下調整:人數(shù)不超過50人時,門票價格不變;人數(shù)超過50人但不超過100人時,每張門票降價a元;人數(shù)超過100人時,每張門票降價2a元,在(2)的條件下,若甲、乙兩個旅行團隊“五一”小黃金周之后去游玩,最多可節(jié)約3400元,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于“線段、角、正方形、平行四邊形、圓”這些圖形中,其中是軸對稱圖形的個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將點A(-3,-2)向右平移5個單位,得到點B,再把點B向上平移4個單位得到點C,則點C的坐標為( )
A. (2,2)B. (-2,-2)C. (-3,2)D. (3,2)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com