【題目】因長期干旱,甲水庫蓄水量降到了正常水位的最低值,為灌溉需要,由乙水庫向甲水庫勻速供水,20h后,甲水庫打開一個排灌閘為農(nóng)田勻速灌溉,又經(jīng)過20h,甲水庫打開另一個排灌閘同時灌溉,再經(jīng)過40h,乙水庫停止供水.甲水庫每個排灌閘的灌溉速度相同,圖中的折線表示甲水庫蓄水量Q(萬m3)與時間t(h)之間的函數(shù)關(guān)系.

求: (1)線段BC的函數(shù)表達(dá)式;

(2)乙水庫供水速度和甲水庫一個排灌閘的灌溉速度;

(3)乙水庫停止供水后,經(jīng)過多長時間甲水庫蓄水量又降到了正常水位的最低值?

【答案】(1)線段BC的函數(shù)表達(dá)式為Q=5x+400(20≤t≤40);

(2)乙水庫的供水速率為15萬m3/ h,甲水庫一個排灌閘的灌溉速率為10萬m3/ h

(3)經(jīng)過10小時甲水庫蓄水量又降到了正常水位的最低值

【解析】⑴Q=5x+400(20≤t≤40).

⑵乙水庫的供水速率為15萬m3/ h,甲水庫一個排灌閘的灌溉速率為10萬m3/ h.

(3)10(h)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個正數(shù)的兩個平方根分別是3a+2和a+14,求這個數(shù)的立方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是 ( )

A.y=(x2)2+1B.y=(x+2)2+1

C.y=(x2)23D.y=(x+2)23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:a,b互為相反數(shù),c,d互為倒數(shù),x=3(a﹣1)﹣(a﹣2b),y=c2d+d2﹣( +c﹣2),求: 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形一個外角是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司組織部分員工到一博覽會的A、B、C、D、E五個展館參觀,公司所購門票種類、數(shù)量繪制成的條形和扇形統(tǒng)計圖如圖所示. 請根據(jù)統(tǒng)計圖回答下列問題:

(1)將條形統(tǒng)計圖和扇形統(tǒng)計圖在圖中補(bǔ)充完整;

(2)若館門票僅剩下一張,而員工小明和小華都想要,他們決定采用抽撲克牌的方法來確定,規(guī)則是:“將同一副牌中正面分別標(biāo)有數(shù)字1,2,3,4的四張牌洗勻后,背面朝上放置在桌面上,每人隨機(jī)抽一次且一次只抽一張;一人抽后記下數(shù)字,不放回再由另一人抽.若小明抽得的數(shù)字比小華抽得的數(shù)字大,門票給小明,否則給小華.” 請用畫樹狀圖或列表的方法計算出小明和小華獲得門票的概率,并說明這個規(guī)則對雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;
④FH= BD其中正確結(jié)論的為(請將所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫證明的理由.
已知:如圖,AB∥CD,EF、CG分別是∠AEC、∠ECD的角平分線;求證:EF∥CG.
證明:∵AB∥CD(已知)
∴∠AEC=∠DCE (
又∵EF平分∠AEC (已知)
∴∠1= ∠AEC (
同理∠2= ∠DCE,∴∠1=∠2
∴EF∥CG (

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

同步練習(xí)冊答案