【題目】如圖,為半圓內(nèi)一點(diǎn),為圓心,直徑長(zhǎng)為,,,將繞圓心逆時(shí)針旋轉(zhuǎn)至,點(diǎn)在上,則邊掃過(guò)區(qū)域(圖中陰影部分)的面積為( )
A. B. C. D.
【答案】A
【解析】
根據(jù)已知條件和旋轉(zhuǎn)的性質(zhì)得出兩個(gè)扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得出答案.
∵∠BOC=60°,△B′OC′是△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)得到的,
∴∠B′OC′=60°,△BCO=△B′C′O,
∴∠B′OC=60°,∠C′B′O=30°,
∴∠B′OB=120°,
∵AB=4cm,
∴OB21cm,OC′=1,
∴B′C′=,
∴S扇形B′OB=,
S扇形C′OC=,
∴陰影部分面積=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC==π;
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=a(x+1)(x﹣3)與x軸交于A、B兩點(diǎn),拋物線(xiàn)與x軸圍成的封閉區(qū)域(不包含邊界),僅有4個(gè)整數(shù)點(diǎn)時(shí)(整數(shù)點(diǎn)就是橫縱坐標(biāo)均為整數(shù)的點(diǎn)),則a的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在正方形EFGH的四條邊上,我們稱(chēng)正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.
因?yàn)檎叫蜛BCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即點(diǎn)B是EF的中點(diǎn).
同理,點(diǎn)C,D,A分別是FG,GH,HE的中點(diǎn).
所以,存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過(guò)程)
探究三:巳知邊長(zhǎng)為1的正方形ABCD, 一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲.乙兩人進(jìn)行跑步訓(xùn)練,他們所跑的路程y(米)與時(shí)間x(秒)之間的關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是( )
A. 離終點(diǎn)40米處,乙追上甲B. 甲比乙遲3秒到終點(diǎn)
C. 甲跑步的速度是5米/秒D. 乙跑步的速度是米/秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)將今年紹興市民最關(guān)注的熱點(diǎn)話(huà)題分為消費(fèi).教育.環(huán)保.反腐及其它共五類(lèi).根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)以上信息解答下列問(wèn)題:
(1)本次共調(diào)查_________人,請(qǐng)?jiān)诖痤}卡上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);
(2)若紹興市約有500萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注教育問(wèn)題的人數(shù)約為多少萬(wàn)人?
(3)在這次調(diào)查中,某單位共有甲.乙.丙.丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四中隨機(jī)抽取兩人進(jìn)行座談,求抽取的兩人恰好是甲和乙的概率(畫(huà)樹(shù)狀圖或列表說(shuō)明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的弦,為半徑的中點(diǎn),過(guò)作交弦于點(diǎn),交于點(diǎn),且是的切線(xiàn).
(1)求證:;
(2)連接,,求;
(3)如果,,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l:y=-2x-8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P.
(1)若⊙P與x軸有公共點(diǎn),則k的取值范圍是______.
(2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說(shuō)明理由;
(3)當(dāng)⊙P與直線(xiàn)l相切時(shí),k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某中學(xué)積極響應(yīng)創(chuàng)建全國(guó)文明城市活動(dòng),舉辦了以“校園文明”為主題的手抄報(bào)比賽.所有參賽作品均獲獎(jiǎng),獎(jiǎng)項(xiàng)分為一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和優(yōu)秀獎(jiǎng),將獲獎(jiǎng)結(jié)果繪制成如右兩幅統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給信息解答意)
(1)等獎(jiǎng)所占的百分比是________;三等獎(jiǎng)的人數(shù)是________人;
(2)據(jù)統(tǒng)計(jì),在獲得一等獎(jiǎng)的學(xué)生中,男生與女生的人數(shù)比為,學(xué)校計(jì)劃選派1名男生和1名女生參加市手抄報(bào)比賽,請(qǐng)求出所選2位同學(xué)恰是1名男生和1名女生的概率;
(3)學(xué)校計(jì)劃從獲得二等獎(jiǎng)的同學(xué)中選取一部分人進(jìn)行集訓(xùn)使其提升為一等獎(jiǎng),要使獲得一等獎(jiǎng)的人數(shù)不少于二等獎(jiǎng)人數(shù)的2倍,那么至少選取多少人進(jìn)行集訓(xùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:我們知道,在四邊形ABCD中,當(dāng)對(duì)角線(xiàn),若,時(shí),
(1)則四邊形ABCD的面積為 ;
小凱遇到一個(gè)問(wèn)題:如圖1,在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,,,,求四邊形ABCD的面積。
小凱發(fā)現(xiàn),如圖2分別過(guò)點(diǎn)A、C作直線(xiàn)BD的垂線(xiàn),垂足分別為點(diǎn)E,F,設(shè)AO為m,通過(guò)計(jì)算與的面積和使問(wèn)題得以解決。
請(qǐng)回答:
(2)的面積為 (用含m的式子表示)
(3)求四邊形ABCD的面積。
參考小凱思考問(wèn)題的方法,解決問(wèn)題:如圖3,在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,,,(),則四邊形ABCD的面積為 (用含a,b,的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com