【題目】已知 的三邊長為a,b,c,且滿足方程a2x2-(c2-a2-b2)x+b2=0,則方程根的情況是( )。
A.有兩相等實根
B.有兩相異實根
C.無實根
D.不能確定

【答案】C
【解析】∵a,b,c為△ABC的三邊長,
∴a2≠0.
∴△=(c2-a2-b22-4a2b2 ,
=(c2-a2-b2-2ab)(c2-a2-b2+2ab),
=[c2-(a+b)2][c2-(a-b)2],
=(c-a-b)(c+a+b)(c+a-b)(c-a+b),
又∵三角形任意兩邊之和大于第三邊,
所以△<0,則原方程沒有實數(shù)根.
答案為:C.
【考點精析】掌握求根公式是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,∠EBF=2ABE,∠EDF=2CDE,則∠E與∠F之間滿足的數(shù)量關系是(

A. E=FB. E+∠F=180°

C. 3E+∠F=360°D. 2E-F=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形中,

1)如圖1,點為線段的中點,連接,.若,求線段的長.

2)如圖2,為線段上一點(不與,重合),以為邊向上構造等邊三角形,線段交于點,連接,,為線段的中點.連接,判斷的數(shù)量關系,并證明你的結論.

3)在(2)的條件下,若,請你直接寫出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:AECBED;

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,02,02,11,11,222,,根據(jù)這個規(guī)律,第2019個點的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料

已知:如圖,四邊形ABCD是平行四邊形;

求作:菱形AECF,使點E,F分別在BC,AD上.
小凱的作法如下:
1)連接AC;
2)作AC的垂直平分線EF分別交BC,ADE,F
3)連接AE,CF
所以四邊形AECF是菱形.

老師說:“小凱的作法正確”.

回答問題:
已知:在平行四邊形ABCD中,點EF分別在邊BC、AD______________________________________________.(補全已知條件)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】育才中學開展了孝敬父母,從家務事做起活動,活動后期隨機調(diào)查了八年級部分學生一周在家做家務的時間,并將結果繪制成如下兩幅尚不完整的統(tǒng)計圖

請你根據(jù)統(tǒng)計圖提供的信息回答下列問題:

1)本次調(diào)查的學生總數(shù)為   人,被調(diào)查學生做家務時間的中位數(shù)是   小時,眾數(shù)是   小時;

2)請你補全條形統(tǒng)計圖;

3)若全校八年級共有學生1500人,估計八年級一周做家務的時間為4小時的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

同步練習冊答案