【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點C(0,5),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標(biāo).
【答案】(1)y=, y=2x﹣5;(2)點M的坐標(biāo)為(2.5,0).
【解析】(1)利用待定系數(shù)法即可解答;
(2)設(shè)點M的坐標(biāo)為(x,2x﹣5),根據(jù)MB=MC,得到,即可解答.
(1)把點A(4,3)代入函數(shù)y=得:a=3×4=12,∴y=.OA==5,
∵OA=OB,∴OB=5,∴點B的坐標(biāo)為(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.
(2)∵點M在一次函數(shù)y=2x﹣5上,∴設(shè)點M的坐標(biāo)為(x,2x﹣5),
∵MB=MC,∴
解得:x=2.5,∴點M的坐標(biāo)為(2.5,0).
“點睛”本題考查了一次函數(shù)與反比例函數(shù)的交點,解決本題的關(guān)鍵是利用待定系數(shù)法求解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=32°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到△A′B′C,且點A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市要對2.8萬名初中生“學(xué)段人數(shù)分布情況”進(jìn)行調(diào)查,采取隨機抽樣的方法從四個學(xué)年中抽取了若干名學(xué)生,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)在這次隨機抽樣中,一共調(diào)查了多少名學(xué)生?
(2)請通過計算補全條形統(tǒng)計圖,并求出六年級所對應(yīng)扇形的圓心角的度數(shù);
(3)全市共有2.8萬名學(xué)生,請你估計全市六、七年級的學(xué)生一共有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】E、F是線段AB上的兩點,且AB=16,AE=1,BF=3,點G是線段EF上的一動點,分別以AG、BG為斜邊在AB同側(cè)作兩個等腰直角三角形,直角頂點分別為D、C,如圖所示,連接CD并取中點P,連結(jié)PG,點G從E點出發(fā)運動到F點,則線段PG掃過的圖形面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個足球和3個籃球共需340元,購買5個足球和2個籃球共需410元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)學(xué)校的實際情況,需購買足球和籃球共96個,并且總費用不超過5720元.問最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(a),木桿EB與FC平行,木桿的兩端B,C用一橡皮筋連接,現(xiàn)將圖(a)中的橡皮筋拉成下列各圖的形狀,試解答下列各題:
(1)探究圖(b)、(c)、(d)、(e)中,之間的數(shù)量關(guān)系,并填空;
①圖(b)中,之間的關(guān)系是________________________;
②圖(c)中,之間的關(guān)系是_________________________;
③圖(d)中,之間的關(guān)系是__________________________;
④圖(e)中,之間的關(guān)系是__________________________;
(2)探究圖(f)、(g)中,之間的數(shù)量關(guān)系,并填空:
①圖(f)中,之間的關(guān)系是________________________________;
②圖(g)中,之間的關(guān)系是________________________________;
(3)請對圖(e)的結(jié)論加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點D,交AB于點G,且D是BC中點,DE⊥AB,垂足為E,交AC的延長線于點F.
(1)求證:直線EF是⊙O的切線;
(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長;
(3)連接CG,在(2)的條件下,求CG:EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點P是對角線BD上的一點,點E在AD的延長線上,且PC=PE,PE交CD于點F.
(1)求證:∠PCD=∠PED;
(2)連接EC,求證:EC=AP;
(3)如圖②,把正方形ABCD改成菱形ABCD,其他條件不變,當(dāng)∠DAB=60°時,請直接寫出線段EC和AP的數(shù)量關(guān)系______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快“秀美荊河水系生態(tài)治理工程”進(jìn)度,污水處理廠決定購買10臺污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,每臺的價格分別為a萬元,b萬元,每月處理污水量分別為240噸,200噸.已知購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
(1)求a,b的值;
(2)廠里預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為有哪幾種購買方案;
(3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為污水處理廠設(shè)計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com