(2012•濟(jì)寧)如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長(zhǎng)是(  )
分析:先求出△EFH是直角三角形,再根據(jù)勾股定理求出FH=20,再利用全等三角形的性質(zhì)解答即可.
解答:解:設(shè)斜線上兩個(gè)點(diǎn)分別為P、Q,
∵P點(diǎn)是B點(diǎn)對(duì)折過去的,
∴∠EPH為直角,△AEH≌△PEH,
∴∠HEA=∠PEH,
同理∠PEF=∠BEF,
∴∠PEH+∠PEF=90°,
∴四邊形EFGH是矩形,
∴△DHG≌△BFE,HEF是直角三角形,
∴BF=DH=PF,
∵AH=HP,
∴AD=HF,
∵EH=12cm,EF=16cm,
∴FH=
EH2+EF2
=
122+162
=20cm,
∴FH=AD=20cm.
故選C.
點(diǎn)評(píng):本題考查的是翻折變換及勾股定理、全等三角形的判定與性質(zhì),解答此題的關(guān)鍵是作出輔助線,構(gòu)造出全等三角形,再根據(jù)直角三角形及全等三角形的性質(zhì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體的主視圖和左視圖,則組成這個(gè)幾何體的小正方體的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,點(diǎn)P坐標(biāo)為(-2,3),以點(diǎn)O為圓心,以O(shè)P的長(zhǎng)為半徑畫弧,交x軸的負(fù)半軸于點(diǎn)A,則點(diǎn)A的橫坐標(biāo)介于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧)如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案