【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,則求出它的度數(shù).
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、∠QMC=60°;(3)、∠QMC=120°.
【解析】
試題分析:(1)、根據(jù)等邊三角形可得∠ABQ=∠CAP,AB=CA,根據(jù)速度相同可得AP=BQ,從而得出三角形全等;(2)、根據(jù)△ABQ≌△CAP得出∠BAQ=∠ACP,然后根據(jù)∠QMC=∠BAQ+∠MACC=∠BAC得出答案;(3)、根據(jù)△ABQ≌△CAP得出∠BAQ=∠ACP,然后根據(jù)∠QMC=∠ACP+∠APM=180°-∠PAC得出答案.
試題解析:(1)、∵△ABC是等邊三角形 ∴∠ABQ=∠CAP,AB=CA, 又∵點(diǎn)P、Q運(yùn)動(dòng)速度相同,
∴AP=BQ, 在△ABQ與△CAP中,AB=AC,∠ABQ=∠CAP,AP=BQ ∴△ABQ≌△CAP(SAS);
(2)、點(diǎn)P、Q在運(yùn)動(dòng)的過(guò)程中,∠QMC不變.
理由:∵△ABQ≌△CAP, ∴∠BAQ=∠ACP, ∵∠QMC=∠ACP+∠MAC, ∴∠QMC=∠BAQ+∠MAC=∠BAC=60°
(3)、點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng)時(shí),∠QMC不變.
理由:∵△ABQ≌△CAP, ∴∠BAQ=∠ACP, ∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的內(nèi)角和是720°,這個(gè)多邊形的邊數(shù)是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【閱讀理解】對(duì)于任意正實(shí)數(shù)a、b,
∵(-)2≥0,∴a-2+b≥0,
∴a+b≥2,(只有當(dāng)a=b時(shí),a+b等于2).
【獲得結(jié)論】在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,
則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問(wèn)題:(1)若>0,只有當(dāng)= 時(shí),m+有最小值 .
【探索應(yīng)用】(2)已知點(diǎn)Q(-3,-4)是雙曲線y=上一點(diǎn),過(guò)Q作QA⊥x軸于點(diǎn)A,作QB⊥y軸于點(diǎn)B.點(diǎn)P為雙曲線y=(x>0)上任意一點(diǎn),連接PA,PB,求四邊形AQBP的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象相交于A(2,1),B兩點(diǎn).
(1)求出反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo),并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一拋物線和拋物線y=﹣2x2的形狀、開(kāi)口方向完全相同,頂點(diǎn)坐標(biāo)是(﹣1,3),則該拋物線的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a<﹣1,點(diǎn)(a﹣1,y1),(a,y2),(a+1,y3)都在函數(shù)y=﹣x2的圖象上,則( )
A.y1<y2<y3
B.y1<y3<y2
C.y3<y2<y1
D.y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com