【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長(zhǎng)交弧AC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時(shí),求出四邊形ACDE的面積.

【答案】
(1)證明:∵F為弦AC(非直徑)的中點(diǎn),

∴AF=CF,

∴OD⊥AC,

∵DE切⊙O于點(diǎn)D,

∴OD⊥DE,

∴AC∥DE


(2)證明:∵AC∥DE,且OA=AE,

∴F為OD的中點(diǎn),即OF=FD,又∵AF=CF,

∠AFO=∠CFD,

∴△AFO≌△CFD(SAS),

∴SAFO=SCFD

∴S四邊形ACDE=SODE

在Rt△ODE中,OD=OA=AE=2,

∴OE=4,

∴DE= =2

∴S四邊形ACDE=SODE= ×OD×OE= ×2×2 =2


【解析】(1)欲證明AC∥DE,只要證明AC⊥OD,ED⊥OD即可.(2)由△AFO≌△CFD(SAS),推出SAFO=SCFD , 推出S四邊形ACDE=SODE , 求出△ODE的面積即可.
【考點(diǎn)精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式 x﹣1>2x,并把解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系xoy.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(4,4 ),請(qǐng)解答下列問(wèn)題:
(1)將△ABC向下平移5個(gè)單位長(zhǎng)度,畫(huà)出平移后的A1B1C1 , 并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱(chēng)的△A2B2C2
(3)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A3B3C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,點(diǎn)F是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= 的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖形變換中的數(shù)學(xué),問(wèn)題情境:在課堂上,興趣學(xué)習(xí)小組對(duì)一道數(shù)學(xué)問(wèn)題進(jìn)行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),連接CD.

(1)探索發(fā)現(xiàn):
如圖①,BC與BD的數(shù)量關(guān)系是;
(2)猜想驗(yàn)證:
如圖②,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想BF,BP,BD三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)拓展延伸:
若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D③中補(bǔ)全圖象,并直接寫(xiě)出BF、BP、BD三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的紙箱里裝有3個(gè)標(biāo)號(hào)為1,2,﹣3的小球,它們的材質(zhì)、形狀、大小完全相同,小紅從紙箱里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小剛從剩下的2個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).
(1)請(qǐng)你運(yùn)用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出點(diǎn)P所有可能的坐標(biāo);
(2)求點(diǎn)(x,y)在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案