【題目】如圖,已知ABDC,ADBCE,FDB上兩點(diǎn)且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= (  )

A. 150° B. 40° C. 80° D. 90°

【答案】D

【解析】由AB=DC,AD=BC可知四邊形ABCD為平行四邊形,根據(jù)BF=DE,可證△ADE≌△CBF,則∠BCF=∠DAE,因?yàn)椤螦EB=120°、∠ADB=30°,所以可推得∠BCF=90°.

解:∵AB=DC,AD=BC,
∴四邊形ABCD為平行四邊形,
∴∠ADE=∠CBF,
∵BF=DE,
∴△ADE≌△CBF,
∴∠BCF=∠DAE,
∵∠DAE=180°﹣∠ADB﹣∠AED,
∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,
∴∠BCF=90°.
故選D.

“點(diǎn)睛”本題主要考查了平行四邊形的性質(zhì),運(yùn)用平行四邊形的性質(zhì)解決以下問(wèn)題,如求角的度數(shù)、線段的長(zhǎng)度,證明角相等或互補(bǔ),證明線段相等或倍分等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2+3x=1,求代數(shù)式3x2+9x﹣2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a﹣b=1,則代數(shù)式2a﹣2b﹣3的值是( 。
A.1
B.-1
C.5
D.-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織了一次七年級(jí)科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品,C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.

(1)B班參賽作品有多少件?

(2)請(qǐng)你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;

(3)通過(guò)計(jì)算說(shuō)明,哪個(gè)班的獲獎(jiǎng)率高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(
A.y=ax2是二次函數(shù)
B.二次函數(shù)自變量的取值范圍是所有實(shí)數(shù)
C.二次方程是二次函數(shù)的特例
D.二次函數(shù)自變量的取值范圍是非零實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn), 與y軸交于C點(diǎn),且A(一1,0).

⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

⑵判斷△ABC的形狀,證明你的結(jié)論;

⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°; 四邊形AO BO′的面積為 .其中正確的結(jié)論是

A①②③ B①②③④ C①②③⑤ D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:

定義:如果二次函數(shù)滿足,則稱這兩個(gè)函數(shù)互為旋轉(zhuǎn)函數(shù)

求函數(shù)旋轉(zhuǎn)函數(shù)

小明是這樣思考的:由函數(shù)可知,,根據(jù),,,求出,,,就能確定這個(gè)函數(shù)的旋轉(zhuǎn)函數(shù)

請(qǐng)參考小明的方法解決下面問(wèn)題:

(1)直接寫(xiě)出函數(shù)旋轉(zhuǎn)函數(shù);

(2)若函數(shù)互為旋轉(zhuǎn)函數(shù),求的值;

(3)已知函數(shù)的圖象與軸交于點(diǎn)A、B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過(guò)點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)互為旋轉(zhuǎn)函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案