【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
【答案】坡道口的限高DF的長是3.8m.
【解析】試題分析:首先根據(jù)AC∥ME,可得∠CAB=∠AE28°,再根據(jù)三角函數(shù)計算出BC的長,進而得到BD的長,進而求出DF即可.
試題解析:∵AC∥ME,
∴∠CAB=∠AEM,
在Rt△ABC中,∠CAB=28°,AC=9m,
∴BC=ACtan28°≈9×0.53=4.77(m),
∴BD=BC﹣CD=4.77﹣0.5=4.27(m),
在Rt△BDF中,∠BDF+∠FBD=90°,
在Rt△ABC中,∠CAB+∠FBC=90°,
∴∠BDF=∠CAB=28°,
∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),
答:坡道口的限高DF的長是3.8m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中, A(0,2),B(-1,0),Rt△AOC的面積為4.
(1)求點C的坐標;
(2)拋物線經(jīng)過A、B、C三點,求拋物線的解析式和對稱軸;
(3)設(shè)點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,D是BC邊上的一點,連接AD,取AD的中點E,過點A作BC的平行線與CE的延長線交于點F,連接DF.
(1)求證:AF=DC;
(2)若AD=CF,試判斷四邊形AFDC是什么樣的四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點P在x軸的下方,y軸的右側(cè),到y(tǒng)軸的距離是3,到x軸的距離是5,則點P的坐標為( )
A.(﹣3,5)
B.(﹣5,3)
C.(3,﹣5)
D.(5,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)3,2,x,1,2的平均數(shù)是2,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。
A.3,2
B.2,1
C.2,2.5
D.2,2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.
(1)求證:AB=BE;
(2)若PA=2,cosB=,求⊙O半徑的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com