【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)m=2,(1,4);(2)(1,2).
【解析】試題分析:(1)首先把點(diǎn)B的坐標(biāo)為(3,0)代入拋物線y=+mx+3,利用待定系數(shù)法即可求得m的值,繼而求得拋物線的頂點(diǎn)坐標(biāo);
(2)首先連接BC交拋物線對(duì)稱軸l于點(diǎn)P,則此時(shí)PA+PC的值最小,然后利用待定系數(shù)法求得直線BC的解析式,繼而求得答案.
試題解析:(1)把點(diǎn)B的坐標(biāo)為(3,0)代入拋物線y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴頂點(diǎn)坐標(biāo)為:(1,4).
(2)連接BC交拋物線對(duì)稱軸l于點(diǎn)P,則此時(shí)PA+PC的值最小,
設(shè)直線BC的解析式為:y=kx+b,
∵點(diǎn)C(0,3),點(diǎn)B(3,0),
∴,解得: ,
∴直線BC的解析式為:y=﹣x+3,
當(dāng)x=1時(shí),y=﹣1+3=2,
∴當(dāng)PA+PC的值最小時(shí),點(diǎn)P的坐標(biāo)為:(1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三點(diǎn)A、B、C,請(qǐng)根據(jù)圖回答下列問(wèn)題:
(1)若將點(diǎn)B向左平移3個(gè)單位后,則A、B、C這三個(gè)點(diǎn)所表示的數(shù)誰(shuí)最小?是多少?
(2)若將點(diǎn)A向右平移4個(gè)單位后,則A、B、C這三個(gè)點(diǎn)所表示的數(shù)誰(shuí)最大?最大的數(shù)比最小的數(shù)大多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形。
(1)你認(rèn)為圖②中陰影部分的正方形的邊長(zhǎng)等于________.
(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積。
方法①___________________________________.
方法②___________________________________.
(3)觀察圖②,試寫出,,這三個(gè)代數(shù)式之間的等量關(guān)系 .
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若,,則求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅紅有5張寫著以下數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列各問(wèn)題:
(1) 從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是_________
(2) 從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是_________
(3) 從中取出除0以外的其他4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使運(yùn)算結(jié)果為24(注:每個(gè)數(shù)字只能用一次,如:23×[1-(-2)],請(qǐng)另外寫出兩種符合要求的運(yùn)算式子:_________________ _________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0, )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為邊長(zhǎng)為2的正方形ABCD的對(duì)角線BD上任一點(diǎn),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出以下4個(gè)結(jié)論:①AP=EF;②AP⊥EF;③EF最短長(zhǎng)度為;④若∠BAP=30°時(shí),則EF的長(zhǎng)度為2.其中結(jié)論正確的有( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)里(將各數(shù)用逗號(hào)分開):
+8,0.275,-|-2|,0,-1.04,-(-10),,,,0.1.
正整數(shù):﹛ …﹜
整數(shù):﹛ …﹜
負(fù)有理數(shù): ﹛ …﹜
分?jǐn)?shù): ﹛ …﹜
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com