【題目】如圖,在平面直角坐標(biāo)系中,直線l: 與x軸.y軸交于B,A兩點(diǎn),點(diǎn)D,C分別為線段AB,OB的中點(diǎn),連結(jié)CD,如圖,將△DCB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角,如圖.
(1)連結(jié)OC,AD,求證∽;
(2)當(dāng)0°<<180°時(shí),若△DCB旋轉(zhuǎn)至A,C,D三點(diǎn)共線時(shí),求線段OD的長(zhǎng);
(3)試探索:180°<<360°時(shí),是否還有可能存在A,C,D三點(diǎn)共線的情況,若存在,求出此直線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)詳見解析;(2)(3)存在,
【解析】
(1)先確定出點(diǎn)A,B坐標(biāo),進(jìn)而求出BC,CD,即可判斷出△OBC∽△ABD;
(2)先確定出△ACB≌△BOA,進(jìn)而判斷出平行四邊形AOBC是矩形,利用勾股定理即可得出結(jié)論;
(3)先求出,進(jìn)而利用勾股定理求出點(diǎn)C的坐標(biāo)(,),最后用待定系數(shù)法即可得出結(jié)論.
解:(1)由得A(0,4),B(8,0),
則OA=4,OB=8,
∵AD=BD,OC=BC
∴BC=4,
∵∠ABO=∠DBC,
∴∠ABO+∠ABC=∠DBC+∠ABC.
∴∠OBC=∠ABD,
又.∵
∴△OBC∽△ABD.
(2)當(dāng)0°<<180°,且A,C,D三點(diǎn)共線時(shí),如圖,
∵∠BCD=90°,
∴∠ACB=90°.
∴∠ACB=∠BOA=90°.
又∵OA=BC=4,AB=BA,
∴△ACB≌△BOA.
∴AC=BO.
∴四邊形AOBC是平行四邊形 又∵∠AOB=90°.
∴平行四邊形AOBC是矩形.
∴∠AOC=90°,AC=OB=8.
∴AD=AC+CD=8+2=10.
∴
(3)存在.
當(dāng)180°<<360°且A,C,D三點(diǎn)共線時(shí),如圖,
連結(jié)OC,同(1)可得:△ABD∽△BOC.
∴
同(2)可得:△ACB≌△BOA.
∴AC=BO=8.
又CD=2,∴AD=6.
∵
∴
∴
過(guò)點(diǎn)C作CM⊥y軸于M,設(shè)OM=y,MC=x.
在Rt△OMC和Rt△AMC中有:
解得:
∴點(diǎn)C的坐標(biāo)(,),
設(shè)直線AC的表達(dá)式為
∴解得:
所以所求直線AC的表達(dá)式為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我區(qū)初中學(xué)生課外閱讀情況,調(diào)查小組對(duì)我區(qū)這學(xué)期初中學(xué)生閱讀課外書籍的冊(cè)數(shù)進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)我區(qū)共有18000名初中生,估計(jì)我區(qū)初中學(xué)生這學(xué)期課外閱讀超過(guò)2冊(cè)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象的一支交于C(1,4),E兩點(diǎn),CA⊥y軸于點(diǎn)A,EB⊥x軸于點(diǎn)B,則以下結(jié)論:①k的值為4;②△BED是等腰直角三角形;③S△ACO=S△BEO;④S△CEO=15;⑤點(diǎn)D的坐標(biāo)為(5,0).其中正確的是( 。
A. ①②③B. ①②③④C. ②③④⑤D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富同學(xué)們的校園生活,某校積極開展了形式多樣的社團(tuán)活動(dòng)(每人僅限參加一項(xiàng)).小明在八年級(jí)隨機(jī)抽取了2個(gè)班級(jí),對(duì)這2個(gè)班級(jí)參加體育類社團(tuán)活動(dòng)的人數(shù)進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖.已知這2個(gè)班級(jí)共有6%的學(xué)生參加“足球”項(xiàng)目,且參加“足球”項(xiàng)目的學(xué)生數(shù)占參加體育類社團(tuán)活動(dòng)學(xué)生數(shù)的20%.
(1)這2個(gè)班參加體育類社團(tuán)活動(dòng)人數(shù)為 .
(2)請(qǐng)?jiān)趫D中將表示“棒球”項(xiàng)目的圖形補(bǔ)充完整;
(2)若該校八年級(jí)共有600名學(xué)生,請(qǐng)你根據(jù)上述信息估計(jì)該校八年級(jí)共有多少名學(xué)生參加“棒球”項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點(diǎn),直線AC:y=-x-6交y軸與點(diǎn)C.點(diǎn)E是直線AB上的動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥x軸交AC于點(diǎn)F,交拋物線于點(diǎn)G.
(1)求拋物線y=-x2+bx+c的表達(dá)式;
(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時(shí),求點(diǎn)G的坐標(biāo);
(3)①在y軸上存在一點(diǎn)H,連接EH、HF,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),以A、E、F、H為頂點(diǎn)的四邊形是矩形?求出此時(shí)點(diǎn)E、H的坐標(biāo);
②在①的前提下,以點(diǎn)E為圓心,EH長(zhǎng)為半徑作圓,點(diǎn)M為⊙E上一動(dòng)點(diǎn),求AM+CM的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用水平線和豎起線將平面分成若干個(gè)邊長(zhǎng)為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則S=a+(b-1).
對(duì)于正三角形網(wǎng)格中的類似問(wèn)題也有對(duì)應(yīng)結(jié)論:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,如圖是該正三角形格點(diǎn)中的兩個(gè)多邊形(設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)為m,內(nèi)部的格點(diǎn)個(gè)數(shù)為n):
(1)根據(jù)圖中提供的信息填表:
m | n-1 | s | |
多邊形1 | 11 | ______ | 15 |
多邊形2 | 8 | 1 | ______ |
… | … | … | … |
(2)則S與m、m-1之間的關(guān)系為______(用含m、n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(,0),動(dòng)點(diǎn)P在線段AB上運(yùn)動(dòng),過(guò)點(diǎn)P作y軸的垂線,垂足為點(diǎn)M,作x軸的垂線,垂足為點(diǎn)N,連接MN,則線段MN的最小值為( )
A. 1B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三一班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):
甲隊(duì) | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙隊(duì) | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是_________分,乙隊(duì)成績(jī)的眾數(shù)是_________分;
(2)已知甲隊(duì)成績(jī)的方差是1.4分2,則成績(jī)較為整齊的是_________隊(duì);
(3)測(cè)試結(jié)果中,乙隊(duì)獲滿分的四名同學(xué)相當(dāng)優(yōu)秀,他們是三名男生、一名女生,現(xiàn)準(zhǔn)備從這四名同學(xué)中隨機(jī)抽取兩人參加學(xué)校組織的經(jīng)典誦讀比賽,用樹狀圖或列表法求恰好抽中一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把半徑為的沿弦折疊,經(jīng)過(guò)圓心,則陰影部分的面積為__________.(結(jié)果保留)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com