【題目】學校召集留守兒童過端午節(jié),桌上擺有甲、乙兩盤粽子,每盤中盛有白粽2個,豆沙粽1個,肉粽1個(粽子外觀完全一樣).
(1)小明從甲盤中任取一個粽子,取到豆沙粽的概率是;
(2)小明在甲盤和乙盤中先后各取了一個粽子,請用樹狀圖或列表法求小明恰好取到兩個白粽子的概率.
【答案】
(1)
(2)解:畫樹狀圖如下:
由樹狀圖可知,一共有16種等可能結果,其中恰好取到兩個白粽子有4種結果,
∴小明恰好取到兩個白粽子的概率為 =
【解析】解:(1)∵甲盤中一共有4個粽子,其中豆沙粽子只有1個, ∴小明從甲盤中任取一個粽子,取到豆沙粽的概率是 ,
所以答案是: ;
【考點精析】解答此題的關鍵在于理解列表法與樹狀圖法的相關知識,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率,以及對概率公式的理解,了解一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.
科目:初中數學 來源: 題型:
【題目】如圖,P(m,m)是反比例函數y= 在第一象限內的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為( )
A.
B.3
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點,且四邊形PEFD為矩形.
(Ⅰ)若△PCD是等腰三角形時,求AP的長;
(Ⅱ)若AP= ,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點A與CD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設正方形ABCD的周長為m,△CHG的周長為n,則 的值為( )
A.
B.
C.
D.隨H點位置的變化而變化
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】邊長為2 的正方形ABCD中,P是對角線AC上的一個動點(點P與A、C不重合),連接BP,將BP繞點B順時針旋轉90°到BQ,連接QP,QP與BC交于點E,QP延長線與AD(或AD延長線)交于點F.
(1)連接CQ,證明:CQ=AP;
(2)設AP=x,CE=y,試寫出y關于x的函數關系式,并求當x為何值時,CE= BC;
(3)猜想PF與EQ的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y= 的圖象經過點A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點C(x,y)也在反比例函數y= 的圖象上,當﹣3≤x≤﹣1時,求函數值y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B、C重合),現將△PCD沿直線PD折疊,使點C落到點C’處;作∠BPC’的角平分線交AB于點E . 設BP=x , BE=y , 則下列圖象中,能表示y與x的函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com