【題目】如圖,在平面直角坐標(biāo)系中,⊙M與y軸相切于原點(diǎn)O,平行于x軸的直線交⊙M于P、Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右邊,若P點(diǎn)的坐標(biāo)為(-1,2),則Q點(diǎn)的坐標(biāo)是
A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )
【答案】A
【解析】試題分析:因?yàn)?/span>⊙M與y軸相切于原點(diǎn)O,平行于x軸的直線交⊙M于P,Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右方,若點(diǎn)P的坐標(biāo)是(﹣1,2),則點(diǎn)Q的坐縱標(biāo)是2,設(shè)PQ=2x,作MA⊥PQ,利用垂徑定理可求QA=PA=x,連接MP,則MP=MO=x+1,在Rt△AMP中,利用勾股定理即可求出x的值,從而求出Q的橫坐標(biāo)=﹣(2x+1).
解:∵⊙M與y軸相切于原點(diǎn)O,平行于x軸的直線交⊙M于P,Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右方,點(diǎn)P的坐標(biāo)是(﹣1,2)
∴點(diǎn)Q的縱坐標(biāo)是2
設(shè)PQ=2x,作MA⊥PQ,
利用垂徑定理可知QA=PA=x,
連接MP,則MP=MO=x+1,
在Rt△AMP中,MA2+AP2=MP2
∴22+x2=(x+1)2∴x=1.5
∴PQ=3,Q的橫坐標(biāo)=﹣(1+3)=﹣4
∴Q(﹣4,2)
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查紅旗小學(xué)六年級(jí)學(xué)生的興趣愛好,以下樣本最具代表性的是( )
A. 該年級(jí)書法社團(tuán)的學(xué)生 B. 該年級(jí)部分女學(xué)生
C. 該年級(jí)跑步較快的學(xué)生 D. 從每個(gè)班級(jí)中,抽取學(xué)號(hào)為10的整數(shù)倍的學(xué)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長(zhǎng)方形ABCD中,AB=8,BC=4,將長(zhǎng)方形沿AC折疊,使點(diǎn)D落在點(diǎn)D′處,求重疊部分△AFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A(﹣3.5,y1),B(﹣1,y2)為二次函數(shù)y=﹣(x+2)2+h的圖象上的兩點(diǎn),則y1_____y2(填“>”,“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)有2014條直線a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此類推,那么a1與a2014的位置關(guān)系是( )
A. 垂直
B. 平行
C. 垂直或平行
D. 重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種藥品原價(jià)為36元/盒,經(jīng)過連續(xù)兩次降價(jià)后售價(jià)為25元/盒.設(shè)平均每次降價(jià)的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25
B.36(1﹣2x)=25
C.36(1﹣x)2=25
D.36(1﹣x2)=25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市按以下規(guī)定收取每月的水費(fèi):用水不超過10立方米,按每立方米2.1元收費(fèi);如果超過10立方米,超過部分按每立方米3元收費(fèi),已知某用戶l2月水費(fèi)平均每立方米2.5元.
按要求回答下列問題:
(1)這個(gè)用戶12月用水量10立方米(填“超過”或“不超過”).
(2)在(1)的前提下,求12月這個(gè)用戶的用水量是多少立方米?
(3)該用戶12月份需交水費(fèi)元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖。
(1)畫圖-連線-寫依據(jù):
先分別完成以下畫圖(不要求尺規(guī)作圖),再與判斷四邊形DEMN形狀的相應(yīng)結(jié)論連線,并寫出判定依據(jù)(只將最后一步判定特殊平行四邊形的依據(jù)填在橫線上).
①如圖1,在矩形ABEN中,D為對(duì)角線的交點(diǎn),過點(diǎn)N畫直線NP∥DE , 過點(diǎn)E畫直線EQ∥DN , NP與EQ的交點(diǎn)為點(diǎn)M , 得到四邊形DEMN;
②如圖2,在菱形ABFG中,順次連接四邊AB , BF , FG , GA的中點(diǎn)D , E , M , N , 得到四邊形DEMN.
(2)請(qǐng)從圖1、圖2的結(jié)論中選擇一個(gè)進(jìn)行證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com