如圖①,P是△ABC邊AC上的動點,以P為頂點作矩形PDEF,頂點D,E在邊BC上,頂點F在邊AB上;△ABC的底邊BC及BC上的高的長分別為a , h,且是關于x的一元二次方程的兩個實數(shù)根,設過D, E,F三點的⊙O的面積為,矩形PDEF的面積為

(1)求證:以a+h為邊長的正方形面積與以a、h為邊長的矩形面積之比不小于4;

(2)求的最小值;

(3)當的值最小時,過點A作BC的平行線交直線BP與Q,這時線段AQ的長與m , n , k的取值是否有關?請說明理由。(11分)

 

【答案】

 

(1)略

(2)

(3)線段AQ的長與m,n,k的取值有關

【解析】解:解法一:

(1)據(jù)題意,∵a+h=.

∴所求正方形與矩形的面積之比:

  1分

同號,

   2分

(說明:此處未得出只扣1分, 不再影響下面評分)

3分

即正方形與矩形的面積之比不小于4.

(2)∵∠FED=90º,∴DF為⊙O的直徑.

∴⊙O的面積為:.  4分

矩形PDEF的面積:

∴面積之比:

,   

,即時(EF=DE), 的最小值為  7分

(3)當的值最小時,這時矩形PDEF的四邊相等為正方形.

過B點過BM⊥AQ,M為垂足,BM交直線PF于N點,設FP= e,

∵BN∥FE,NF∥BE,∴BN=EF,∴BN =FP =e.

由BC∥MQ,得:BM =AG =h.

∵AQ∥BC, PF∥BC, ∴AQ∥FP,

∴△FBP∽△ABQ.     8分  (說明:此處有多種相似關系可用,要同等分步驟評分)

,……9分

.∴……10分

……11分

∴線段AQ的長與m,n,k的取值有關.    (解題過程敘述基本清楚即可)

解法二:

(1)∵a,h為線段長,即a,h都大于0,

 ∴ah>0…………1分(說明:此處未得出只扣1分,再不影響下面評分)

  ∵(a-h)2≥0,當a=h時等號成立.

        故,(a-h)2=(a+h)2-4a h≥0.   2分

    ∴(a+h)2≥4a h,

    ∴≥4.(﹡)    3分

      這就證得≥4.(敘述基本明晰即可)

(2)設矩形PDEF的邊PD=x,DE=y,則⊙O的直徑為 .

          S⊙O=…………4分, S矩形PDEF=xy

=  

= 6分

由(1)(*),            .

.

的最小值是  7分

(3)當的值最小時,

這時矩形PDEF的四邊相等為正方形. ∴EF=PF.作AG⊥BC,G為垂足.

∵△AGB∽△FEB,∴.……8分

∵△AQB∽△FPB, ,……9分

=

而 EF=PF,∴AG=AQ=h, ……………10分

∴AG=h=,

或者AG=h= 11分

∴線段AQ的長與m,n,k的取值有關. (解題過程敘述基本清楚即可)

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓O是△ABC的外接圓,AB=AC,過點A作AP∥BC,交BO的延長線于點P.
(1)求證:AP是圓O的切線;
(2)若圓O的半徑R=5,BC=8,求線段AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,原點O是△ABC和△A′B′C′的位似中心,點A(1,0)與點A′(-2,0)是對應點,點B(2,2),則B′點的坐標
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•利川市二模)如圖,點P是△ABC三條角平分線的交點,若∠BPC=108°,則下列結論中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點O是△ABC的內心,若∠BAC=86°,則∠BOC=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點O是△ABC外的一點,分別在射線OA,OB,OC上取一點A′,B′,C′,使得
OA′
OA
=
OB′
OB
=
OC′
OC
=3
,連接A′B′,B′C′,C′A′,所得△A′B′C′與△ABC是否相似?證明你的結論.精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案