【題目】(1)如圖1,已知AB⊥l,DE⊥l,垂足分別為B、E,且C是l上一點(diǎn),∠ACD=90°,求證:△ABC∽△CED;
(2)如圖2,在四邊形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長(zhǎng).
【答案】(1)詳見解析;(2).
【解析】
(1)先證明∠BAC=∠DCE,根據(jù)相似三角形的判定△ABC∽△CED即可;
(2)利用勾股定理和相似三角形的判定和性質(zhì)解答即可.
證明:(1)∵AB⊥l,DE⊥l,
∴∠ABC=∠CED=90°,∠ACB+∠BAC=90°,
∵∠ACD=90°,
∴∠ACB+∠DCE=90°,
∴∠BAC=∠DCE,
∴△ABC∽△CED;
(2)如圖,連接AC,
∵∠ABC=90°,
∴ ,
∵AD= ,CD=10,
∴△ACD滿足AC2+CD2=AD2,
∴∠ACD=90°,
如圖,過點(diǎn)D作DE⊥BC延長(zhǎng)線于點(diǎn)E,
由(1)得此時(shí)△ABC∽△CED,
∴ ,
∴CE=6,DE=8,
在Rt△BDE中,BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P是內(nèi)切圓的圓心.將沿x軸的正方向作無滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為,第二次滾動(dòng)后圓心為,…,依此規(guī)律,第2019次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點(diǎn)D由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s.連接DE,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<10),解答下列問題:
(1)當(dāng)t為何值時(shí),△BDE的面積為7.5cm2;
(2)在點(diǎn)D,E的運(yùn)動(dòng)中,是否存在時(shí)間t,使得△BDE與△ABC相似?若存在,請(qǐng)求出對(duì)應(yīng)的時(shí)間t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一幅長(zhǎng)60 cm、寬40 cm的長(zhǎng)方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長(zhǎng)方形掛圖,如圖.如果要使整個(gè)掛圖的面積是2816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1,拋物線y=ax2+bx﹣3與x軸交于A(﹣2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)N是拋物線上異于點(diǎn)C的動(dòng)點(diǎn),若△NAB的面積與△CAB的面積相等,求出點(diǎn)N的坐標(biāo);
(3)如圖2,當(dāng)P為OB的中點(diǎn)時(shí),過點(diǎn)P作PD⊥x軸,交拋物線于點(diǎn)D.連接BD,將△PBD沿x軸向左平移m個(gè)單位長(zhǎng)度(0<m≤2),將平移過程中△PBD與△OBC重疊部分的面積記為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=4,AB=8,則AE的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF在上取動(dòng)點(diǎn)G,過點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為( 。
A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)
C.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)D.以上都不是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90得到△DEC,∠ACD的平分線CF交DE于點(diǎn)F,連接AE,AF.
(1)求∠CEA度數(shù);
(2)求證AF⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+a2+3(其中x是自變量),當(dāng)x≤﹣2時(shí),y隨x的增大而增大,且﹣2≤x≤1時(shí),y的最大值為5,則a的值為( 。
A.﹣1B.2C.﹣1或2D.或﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com