【題目】如圖,把一個(gè)轉(zhuǎn)盤分成四等份,依次標(biāo)上數(shù)字1、2、3、4,若連續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤二次,指針指向的數(shù)字分別記作作為點(diǎn)的橫、縱坐標(biāo).

1】求點(diǎn)Aa,b)的個(gè)數(shù);

2】求點(diǎn)Aa,b)在函數(shù)的圖象上的概率.

【答案】

1 列表或畫樹狀圖



1

2

3

4

1

1,1

2,1

3,1

41

2

1,2

2,2

32

4,2

3

1,3

2,3

3,3

43

4

1,4

2,4

34

4,4

因此,點(diǎn)的個(gè)數(shù)共有16個(gè); (3分)

2 由(1)得,可能出現(xiàn)的結(jié)果有16種,它們出現(xiàn)的可能性是相同的.若點(diǎn)上,則,由(1)得,因此,點(diǎn)在函數(shù)圖象上的概率為

【解析】

依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)DDE⊥AC分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.

(1)求證:EF⊙O的切線;

(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:設(shè)ab=(mn)2(其中a,bm,n均為整數(shù)),則有abm2+2n2+2mn,∴am2+2n2b=2mn.這樣小明就找到了一種把類似ab的式子化為平方式的方法.請(qǐng)你仿照小明的方法解決下列問題:

(1)當(dāng)a,bm,n均為正整數(shù)時(shí),若ab=(mn)2,用含m,n的式子分別表示a,b,得a______________b________;

(2)利用所探索的結(jié)論,找一組正整數(shù)a,bm,n填空:

________________=(________+________)2

(3)a+4=(mn)2,且am,n均為正整數(shù),求a的值.

(4)試化簡(jiǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:若m22mn+2n210n+250,求m,n的值.

解:∵m22mn+2n210n+250,

∴(m22mn+n2+n210n+25)=0

∴(mn2+n520,

mn0,n50

n5,m5

根據(jù)你的觀察,探究下面的問題:

1)已知:x2+2xy+2y2+4y+40,求xy的值;

2)已知:△ABC的三邊長(zhǎng)a,bc都是正整數(shù),且滿足:a2+b216a12b+1000,求△ABC的周長(zhǎng)的最大值;

3)已知:△ABC的三邊長(zhǎng)是a,bc,且滿足:a2+2b2+c22ba+c)=0,試判斷△ABC是什么形狀的三角形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動(dòng)之一,某校七年級(jí)(1)班班長(zhǎng)對(duì)全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息回答:

1)該班同學(xué)所搶紅包金額的眾數(shù)是______,

中位數(shù)是______;

2)該班同學(xué)所搶紅包的平均金額是多少元?

3)若該校共有18個(gè)班級(jí),平均每班50人,請(qǐng)你估計(jì)該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.當(dāng)點(diǎn)E、FBC、CD上滑動(dòng)時(shí),則△CEF的面積最大值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,,點(diǎn)的中點(diǎn),平分.

1)求證:;

2)若,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是以AB為直徑的O的弦,點(diǎn)DO上的一點(diǎn),過點(diǎn)DO的切線交直線AC于點(diǎn)EAD平分BAE,若AB10DE3,則AE的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1分別與x軸、y軸交于點(diǎn)B、C,且與直線l2交于點(diǎn)A.

(1)求出點(diǎn)A的坐標(biāo)

(2)若D是線段OA上的點(diǎn),且△COD的面積為12,求直線CD的解析式

(3)在(2)的條件下,設(shè)P是射線CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案