【題目】如圖是某月的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置的9個數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個數(shù)的和為(  )

A. 69 B. 84 C. 189 D. 207

【答案】C

【解析】

由日歷表可知,圈出的9個數(shù)中,最大數(shù)與最小數(shù)的差總為16,故圈出的最小數(shù)為x,則圈出的最大數(shù)為x+16;

接下來根據(jù)圈出的9個數(shù)中最大數(shù)與最小數(shù)的和為42可列方程,求解即可得到圈出最小數(shù);

此時再根據(jù)圈出的9個數(shù)中,每一行相鄰兩數(shù)相差1,每一列相鄰兩數(shù)相差7即可寫出這9個數(shù),至此,本題就不難解答了.

解:設(shè)圈出的最小數(shù)為x,則圈出的最大數(shù)為x+16,由題意得,

x+(x+16)=42,

解得x=13.

故圈出的最小的三個數(shù)為13,14,15,

下面一行的數(shù)分別比上面三個數(shù)大7,故為20,21,22,

第三行的數(shù)分別比上一行三個數(shù)大7,故為27,28,29,

所以圈出的這9個數(shù)的和為189.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點(diǎn)D處測得壁畫底端的俯角∠BDF=30°,且點(diǎn)D距離地面的高度DE=2m,求壁畫AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2 (b+1)x+ (b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.
(1)點(diǎn)B的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內(nèi)是否存在點(diǎn)P,使得四邊形PCOB的面積等于2b,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)請你進(jìn)一步探索在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO,△QOA和△QAB中的任意兩個三角形均相似(全等可作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)D在BC的延長線上,且BD=AB,過點(diǎn)B作BE⊥AC,與BD的垂線DE交于點(diǎn)E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓周角∠BAC=55°,分別過B,C兩點(diǎn)作⊙O的切線,兩切線相交于點(diǎn)P,則∠BPC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= (k1>0),y= (k2<0).點(diǎn)A在y軸的正半軸上,過點(diǎn)A作直線BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點(diǎn)B和C,連接OC、OB.若△BOC的面積為 ,AC:AB=2:3,則k1= , k2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

同步練習(xí)冊答案