【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線;

理解:

如圖1,ABC的三個(gè)頂點(diǎn)均在正方形網(wǎng)格中的格點(diǎn)上,若四邊形ABCD是以AC相似對(duì)角線的四邊形,請(qǐng)用無刻度的直尺在網(wǎng)格中畫出點(diǎn)D(保留畫圖痕跡,找出3個(gè)即可);

如圖2,在四邊形ABCD中,∠ABC80°,∠ADC140°,對(duì)角線BD平分∠ABC. 請(qǐng)問BD是四邊形ABCD相似對(duì)角線嗎?請(qǐng)說明理由;

運(yùn)用:

如圖3,已知FH是四邊形EFGH相似對(duì)角線, EFH=∠HFG30°.連接EG,若EFG的面積為,求FH 的長.

【答案】1)如圖1,△ACD1、△ACD2、、△ACD3△ACD4(任畫三個(gè)即可);(2BD是四邊形ABCD的“相似對(duì)角線”,理由見解析;(3FH=

【解析】

1)根據(jù)相似對(duì)角線的定義,利用方格紙的特點(diǎn)可找到D點(diǎn)的位置;

2)先說明∠A+ADB=140°=ADC,即可說明理由;

3)先判斷出△FEHC∽△FHG,得出FH2=FE·FG,再求出EQ=FE,即可求得FH的值.

解:(1)由圖1可得,AB=,BC=2,∠ABC=90°,AC=5,

四邊形ABCD是以AC為“相似對(duì)角線”的四邊形,

①當(dāng)∠ACD=90°時(shí),△ACD∽△ABC或△ACD∽△CBA

CD=10CD=2.5

同理:當(dāng)∠CAD=90°時(shí),AD=2.5AD=10

根據(jù)方格紙的特點(diǎn)可找到D點(diǎn)的位置,然后再連接CDAD

即如圖△ACD1、△ACD2、、△ACD3、△ACD4(任畫三個(gè)即可)即為所求;

2BD是四邊形ABCD的“相似對(duì)角線”,理由如下:

∵∠ABC=80°,BD平分∠ABC

∴∠ABD=DBC=40°,

∵∠A+ADB=140°

∵∠ADC=140°,

∴∠BDC+ADB=140°,

∴∠A=BDC,

∴△ABD∽△DBC,

BD是四邊形ABCD的“相似對(duì)角線”;

3)∵FH是四邊形EFGH的“相似對(duì)角線”,

∴△EFH與△HFG相似,

∵∠EFH=HFG,

∴△FEHC∽△FHG

∴FH2=FE·FG,

如圖3,過點(diǎn)EEQFGQ,

EQ=FE·sin60°=FE

.

FG·FE=24,

∵FH2=FE·FG,

∴FH2=24

∴FH=,FH=-(舍去)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,射線與邊交于點(diǎn),、分別為、中點(diǎn),設(shè)點(diǎn)、到射線的距離分別為、,則的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣、兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬元.

1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬元?

2)若該縣的類學(xué)校不超過5所,則類學(xué)校至少有多少所?

3)我市計(jì)劃今年對(duì)該縣、兩類學(xué)校共6所進(jìn)行改造,改造資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元,其中地方財(cái)政投入到兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請(qǐng)你通過計(jì)算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時(shí),每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過正常服用量的12倍,否則會(huì)對(duì)兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時(shí)可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.

求證:△ABE≌△CBF

CFAE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)計(jì)劃對(duì)面積為3600m2的區(qū)域進(jìn)行綠化經(jīng)投標(biāo),由甲,乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)4天能完成綠化的面積等于乙隊(duì)8天完成綠化的面積甲隊(duì)3天能完成綠化的面積比乙隊(duì)5天能完成綠化面積多50m2

(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積;

(2)若甲隊(duì)每天化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,要使這次綠化的總費(fèi)用不超過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖像交點(diǎn)A.點(diǎn)B,與x軸相交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,4),點(diǎn)B的縱坐標(biāo)為2.

1)當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.(直接寫出來)

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC6,BC8,矩形CDEF的頂點(diǎn)E在邊AB上,DF兩點(diǎn)分別在邊AC,BC上,且,將矩形CDEF以每秒1個(gè)單位長度的速度沿射線CB方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映St的函數(shù)關(guān)系的圖象為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為322日至27日間,我區(qū)每日最高氣溫與最低氣溫的變化情況.

1)最低氣溫的中位數(shù)是 ℃;324日的溫差是 ℃;

2)分別求出322日至27日間的最高氣溫的平均數(shù)、最低氣溫的平均數(shù);

3)經(jīng)過計(jì)算,最高氣溫和最低氣溫的方差分別為6.33、5.67,數(shù)據(jù)更穩(wěn)定的是最高氣溫還是最低氣溫?

查看答案和解析>>

同步練習(xí)冊答案