如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是          
 

試題分析:從已知條件結合圖形認真思考,通過構造全等三角形,利用三角形的三邊的關系確定線段和的最小值.
如圖,在AC上截取AE=AN,連接BE

∵∠BAC的平分線交BC于點D,
∴∠EAM=∠NAM,
∵AM=AM
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
當BE是點B到直線AC的距離時,BE⊥AC,
又AB=4,∠BAC=45°,此時,△ABE為等腰直角三角形,
∴BE=,
即BE取最小值為
∴BM+MN的最小值是
點評:解此題是受角平分線啟發(fā),能夠通過構造全等三角形,把BM+MN進行轉化,但是轉化后沒有辦法把兩個線段的和的最小值轉化為點到直線的距離而導致錯誤.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖, 已知AC=DB. 要說明△ABC≌△DCB, 只需增加一個條件是       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC是等邊三角形,且AB∥CE.

(1) 求證:△ABD∽△CED;
(2) 若AB=6,AD=2CD,
①求E到BC的距離EH的長.
② 求BE的長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如下圖,在△ABC中,AB=8,BC=6,AC的垂直平分線MN交AB、AC于點M、N。則△BCM的周長為_________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我校有一塊四邊形的空地ABCD,如圖所示,為了美化我們的校園,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,C D=13m,DA=4m,若每平方米草皮需要200元,問學校需要多少元的資金投入?
  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一個三角形的兩條邊長分別是1㎝和2㎝,一個內角為40°.
(1)請你在下圖中畫出一個滿足題設條件的三角形;

(2)你是否還能畫出既滿足題設條件又與(1)中所畫的三角形不全等的三角形?若能,用“尺規(guī)作圖”作出所有這樣的三角形;若不能,請說明理由;
(3)如果將題設條件改為“三角形的兩條邊長分別是3㎝和4㎝,一個內角為40°,那么滿足這一條件,且彼此不全等的三角形共有     個.
(請在你畫出的圖中標出已知角的度數(shù)和已知邊的長度,“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB∥CD,∠CED=90°,∠BED=40°,求∠C的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若多邊形的邊數(shù)增加1,則其內角和的度數(shù)(   )
A.增加180ºB.其內角和為360ºC.其內角和不變D.其外角和減少

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一副三角板如上圖擺放,若∠BAE=135°17′,則∠CAD的度數(shù)是      .

查看答案和解析>>

同步練習冊答案