【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:其中正確的個(gè)數(shù)是( 。
①a<0;
②b<0;
③c<0;
④;
⑤a+b+c<0.
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
【答案】B
【解析】
根據(jù)二次函數(shù)圖象的開口方向、對(duì)稱軸位置、與x軸、y軸的交點(diǎn)坐標(biāo)、過(1,a+b+c)等知識(shí),逐個(gè)判斷即可.
解:拋物線開口向下,因此①正確,
對(duì)稱軸為x=>0,可知a、b異號(hào),a<0,則b>0,因此②不正確;
拋物線與y軸交點(diǎn)在正半軸,因此c>0,故③不正確;
拋物線的頂點(diǎn)坐標(biāo)為(﹣,),又頂點(diǎn)坐標(biāo)為(,1),因此④正確;
拋物線與x軸的一個(gè)交點(diǎn)在x軸的負(fù)半軸,對(duì)稱軸為x=,
當(dāng)x=1時(shí),y=a+b+c>0,因此⑤不正確;
綜上所述,正確的結(jié)論有2個(gè),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在平面直角坐標(biāo)系中,點(diǎn)、、分別為坐標(biāo)軸上的三個(gè)點(diǎn),且,,.
(1)求經(jīng)過、、三點(diǎn)的拋物線的解析式;
(2)點(diǎn)是拋物線上一個(gè)動(dòng)點(diǎn),且在直線的上方,連接、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖2,過拋物線頂點(diǎn)作直線軸,交軸于點(diǎn),點(diǎn)是拋物線上、兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與、兩點(diǎn)重合),直線、與直線分別交于點(diǎn)、,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D是AC的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PA、PD.則PA+PD的最小值為( 。
A.B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點(diǎn)A作AD平分∠BAC交⊙O于點(diǎn)D,過點(diǎn)D作BC的平行線分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F,DG⊥AB于點(diǎn)G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若,OA=4,求劣弧的長(zhǎng)度(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帆同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)進(jìn)行探究,已知函數(shù)過,,.
(1)求函數(shù)解析式;
(2)如圖1,在平面直角坐標(biāo)系中畫的圖象,根據(jù)函數(shù)圖象,寫出函數(shù)的一條性質(zhì) ;
(3)結(jié)合函數(shù)圖象回答下列問題:
①方程的近似解的取值范圍(精確到個(gè)位)是 ;
②若一次函數(shù)與有且僅有兩個(gè)交點(diǎn),則的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,GF⊥BC于F,連接EF.
(1)如圖1,求證:四邊形AEFG是菱形;
(2)如圖2,若E為BG的中點(diǎn),過點(diǎn)E作EM∥BC交AC于M,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中是CM長(zhǎng)倍的所有線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長(zhǎng)EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為F,連接AF交CD于點(diǎn)N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號(hào)的溫控水箱的工作過程是:接通電源后,在初始溫度20℃下加熱水箱中的水;當(dāng)水溫達(dá)到設(shè)定溫度80℃時(shí),加熱停止;此后水箱中的水溫開始逐漸下降,當(dāng)下降到20℃時(shí),再次自動(dòng)加熱水箱中的水至80℃時(shí),加熱停止;當(dāng)水箱中的水溫下降到20℃時(shí),再次自動(dòng)加熱,…,按照以上方式不斷循環(huán).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)該型號(hào)溫控水箱中的水溫隨時(shí)間變化的規(guī)律進(jìn)行了探究.發(fā)現(xiàn)水溫y是時(shí)間x的函數(shù),其中y(單位:℃)表示水箱中水的溫度.x(單位:min)表示接通電源后的時(shí)間.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)下表記錄了32min內(nèi)14個(gè)時(shí)間點(diǎn)的溫控水箱中水的溫度y隨時(shí)間x的變化情況
接通電源后的時(shí)間x(單位:min) | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
水箱中水的溫度y(單位:℃) | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
m的值為 ;
(2)①當(dāng)0≤x≤4時(shí),寫出一個(gè)符合表中數(shù)據(jù)的函數(shù)解析式 ;
當(dāng)4<x≤16時(shí),寫出一個(gè)符合表中數(shù)據(jù)的函數(shù)解析式 ;
②如圖,在平面直角坐標(biāo)系xOy中,描出了上表中部分?jǐn)?shù)據(jù)對(duì)應(yīng)的點(diǎn),根據(jù)描出的點(diǎn),畫出當(dāng)0≤x≤32時(shí),溫度y隨時(shí)間x變化的函數(shù)圖象:
(3)如果水溫y隨時(shí)間x的變化規(guī)律不變,預(yù)測(cè)水溫第8次達(dá)到40℃時(shí),距離接通電源 min.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com