【題目】如圖,反比例函數(shù)經(jīng)過兩點,過點作軸于點,過點作軸于點,過點作軸于點,連接,已知,,則_____.
【答案】
【解析】
過點A作AH⊥x軸于點H,交BD于點F,則四邊形ACOH和四邊形ACDF均為矩形,根據(jù)S矩形BEOD=16,可得k的值,即可得到矩形ACOH和矩形ACDF的面積,進而求出S△ACD.
解:過點A作AH⊥x軸于點H,交BD于點F,則四邊形ACOH和四邊形ACDF均為矩形
∵S矩形BEOD=16,反比例函數(shù)經(jīng)過點B
∴k=16
∵反比例函數(shù)經(jīng)過點A
∴S矩形ACOH=16
∵AC=2
∴OC=16÷2=8
∴CD=OC-OD=OC-BE=8-2=6
∴S矩形ACDF=2×6=12
∴S△ACD=S矩形ACDF=×12=6.
故答案為6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作.
(1)求此拋物線的解析式;
(2)點為圖形中的拋物線上一點,且點的橫坐標(biāo)為,過點作軸,交線段于點.當(dāng)為等腰直角三角形時,求的值;
(3)點是直線上一點,且點的橫坐標(biāo)為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當(dāng),兩點中只有一個點在圖形的內(nèi)部時,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線,下列結(jié)論中一定正確的是____________(填序號即可).
①;
②若是拋物線上的兩點,當(dāng)時,
③若方程的兩根為,且,則
④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,. 點是平面內(nèi)不與點重合的任意一點, 連接,將線段繞點逆時針旋轉(zhuǎn)得到線段,連接
(1)動手操作
如圖1,當(dāng)時,我們通過用 刻度尺和量角器度量發(fā)現(xiàn):
的值是;直線與直線相交所成的較小角的度數(shù)是;
請證明以上結(jié)論正確.
(2)類比探究
如圖2,當(dāng)時,請寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A,B兩點,過點A作AC垂直x軸于點C,連接BC.若△ABC的面積為2.
(1)求k的值;
(2)直接寫出>2x時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐 在中,,點為斜邊上的動點(不與點重合).
(1)操作發(fā)現(xiàn): 如圖①,當(dāng)時,把線段繞點逆時針旋轉(zhuǎn)得到線段,連接.
①的度數(shù)為________;
②當(dāng)________時,四邊形為正方形;
(2)探究證明: 如圖②,當(dāng)時,把線段繞點逆時針旋轉(zhuǎn)后并延長為原來的兩倍, 記為線段,連接.
①在點的運動過程中,請判斷與的大小關(guān)系,并證明;
②當(dāng)時,求證:四邊形為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品原價為100元,第一次漲價,第二次在第一次的基礎(chǔ)上又漲價,設(shè)平均每次增長的百分數(shù)為x,那么x應(yīng)滿足的方程是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為激發(fā)學(xué)生的閱讀興趣,培養(yǎng)學(xué)生良好的閱讀習(xí)慣,我區(qū)某校欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)填空或選擇:此次共調(diào)查了______名學(xué)生;圖2中“小說類”所在扇形的圓心角為______度;學(xué)生會采用的調(diào)查方式是______.A.普查 B.抽樣調(diào)查
(2)將條形統(tǒng)計圖(圖1)補充完整;
(3)若該校共有學(xué)生2500人,試估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com