【題目】如圖,一次函數(shù)的圖像與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為,二次函數(shù)的圖像經(jīng)過(guò)AB、C三點(diǎn).

1)求二次函數(shù)的解析式

2)如圖1,已知點(diǎn)在拋物線(xiàn)上,作射線(xiàn)BD,點(diǎn)Q為線(xiàn)段AB上一點(diǎn),過(guò)點(diǎn)Q軸于點(diǎn)M,作于點(diǎn)N,過(guò)Q軸交拋物線(xiàn)于點(diǎn)P,當(dāng)QMQN的積最大時(shí),求點(diǎn)P的坐標(biāo);

3)在(2)的條件下,連接AP,若點(diǎn)E為拋物線(xiàn)上一點(diǎn),且滿(mǎn)足,求點(diǎn)E的坐標(biāo).

【答案】1;(2;(3

【解析】

1)求出A、B的坐標(biāo),設(shè)二次函數(shù)解析式為,把A02)代入即可得出結(jié)論;

2)先求出D的坐標(biāo)和直線(xiàn)BD的解析式,過(guò)DDTx軸于T,可求得∠DBO=45°.設(shè)Qm,m+2),則Gm,-m+4),MQ=m.設(shè)∠ABO=α,則∠NBQ=45°-α,∠MQB=180°-α.證明ΔGQN為等腰直角三角形,表示出NQ,MQNQ,利用二次函數(shù)的性質(zhì)解答即可;

3)如圖,過(guò)AAHPE于點(diǎn)H,解RtAPH,得到AH=1,PH=2.設(shè)Hmn),利用兩點(diǎn)間距離公式可求出H的坐標(biāo),進(jìn)而求出點(diǎn)E的坐標(biāo).

1)在中,令x=0,得y=2,∴A0,2);

y=0,得,解得:x=4,∴B40).

設(shè)二次函數(shù)解析式為,

A0,2)代入得:

解得:

2)∵點(diǎn)D1,n)在拋物線(xiàn)上,∴n==3,

D1,3).

設(shè)直線(xiàn)BD的解析式為y=kx+b,則,

解得:,

∴直線(xiàn)BD的解析式為:y=-x+4

過(guò)DDTx軸于T,則OT=1,DT=3

OB=4,∴BT=OB-OT=4-1=3,

DT=BT,

∴∠DBO=45°.

設(shè)Qm,m+2),則Gm-m+4),MQ=m

設(shè)∠ABO=α,則∠NBQ=45°-α

MQB=180°-α.

又∵∠PQM=90°,∠NQB=90°-(45°-α)=45°+α,

∴∠GQN=360°-90°-(180°-α)-(45°+α)=45°,

∴ΔGQN為等腰直角三角形,

NQ=,

MQNQ=

當(dāng)m=2時(shí),QMQN最大,此時(shí)P2,3).

3)如圖,過(guò)AAHPE于點(diǎn)H,其中,∠APE=ABO

A0,2),P2,3),

,

,

PH=2AH

AP=,,

,

AH=1,PH=2

設(shè)Hmn),

,

,

解得:,

①易求直線(xiàn)PH的解析式為

解得:(舍)

;

②易求直線(xiàn)PH1的解析式為

,

解得:,

綜上所述:符合題意的E點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2C分別交AC,BC于點(diǎn)DE,得到DE弧.

(1)求證:ABC的切線(xiàn).

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)D為銳角ABC內(nèi)一點(diǎn),∠ADB=ACB+90°,過(guò)點(diǎn)BBEBDBE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE;

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,邊上的中線(xiàn),點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)是點(diǎn),連接并延長(zhǎng)到點(diǎn),使,連接,.,點(diǎn)的距離,則四邊形的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光明中學(xué)為了解學(xué)生對(duì)食堂工作的滿(mǎn)意程度,8年級(jí)2班數(shù)學(xué)興趣小組在全校甲、乙兩個(gè)班內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿(mǎn)意、一般、滿(mǎn)意、非常滿(mǎn)意四類(lèi),回收、整理好全部問(wèn)卷后,得到下列不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問(wèn)題:

1)求此次調(diào)查中接受調(diào)查的人數(shù);

2)求此次調(diào)查中結(jié)果為非常滿(mǎn)意的人數(shù);

3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為一般的4位同學(xué)中隨機(jī)選擇2位進(jìn)行回訪(fǎng),已知4位同學(xué)中有2位來(lái)自甲班,另2位來(lái)自乙班,請(qǐng)用列表或用畫(huà)樹(shù)狀圖的方法求出選擇的同學(xué)均來(lái)自甲班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以的邊為直徑作,點(diǎn)C上,的弦,,過(guò)點(diǎn)C于點(diǎn)F,交于點(diǎn)G,過(guò)C的延長(zhǎng)線(xiàn)于點(diǎn)E

1)求證:的切線(xiàn);

2)求證:;

3)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料

我們通過(guò)下列步驟估計(jì)方程2x2+x﹣2=0的根的所在的范圍.

第一步:畫(huà)出函數(shù)y=2x2+x﹣2的圖象,發(fā)現(xiàn)圖象是一條連續(xù)不斷的曲線(xiàn),且與x軸的一個(gè)

交點(diǎn)的橫坐標(biāo)在0,1之間.

第二步:因?yàn)楫?dāng)x=0時(shí),y=﹣2<0;當(dāng)x=1時(shí),y=1>0.

所以可確定方程2x2+x﹣2=0的一個(gè)根x1所在的范圍是0<x1<1.

第三步:通過(guò)取01的平均數(shù)縮小x1所在的范圍;

x=,因?yàn)楫?dāng)x=時(shí),y<0,

又因?yàn)楫?dāng)x=1時(shí),y>0,

所以<x1<1.

(1)請(qǐng)仿照第二步,通過(guò)運(yùn)算,驗(yàn)證2x2+x﹣2=0的另一個(gè)根x2所在范圍是﹣2<x2<﹣1;

(2)在﹣2<x2<﹣1的基礎(chǔ)上,重復(fù)應(yīng)用第三步中取平均數(shù)的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P在函數(shù)yx0)的圖象上從左向右運(yùn)動(dòng),PAy軸,交函數(shù)y=﹣x0)的圖象于點(diǎn)A,ABx軸交PO的延長(zhǎng)線(xiàn)于點(diǎn)B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,輪船在A處觀(guān)測(cè)燈塔C位于北偏東70o方向上,輪船從A處以每小時(shí)30海里的速度沿南偏東50o方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí)觀(guān)測(cè)燈塔C位于北偏東25o方向上,求燈塔C與碼頭B之間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案