【題目】如圖,正方形ABCD,點E在CD上,連接AE,BD,點G是AE中點,過點G作FH⊥AE,FH分別交AD,BC于點F,H,FH與BD交于點K,且HK=2FG,若EG=,則線段AF的長為_______________.
【答案】
【解析】
本題的解題關(guān)鍵是根據(jù)圓周角定理得出GK=EG,得到這個條件以后,再通過作輔助線,得到△MFH≌△ADE,得出FH的長,然后再根據(jù)已知計算即可.
如圖,過H點向AD邊做垂線,交AD于點M,
由題可知HM=AD,∠FMH=∠ADE=90°,
∵FH⊥AE,
∴∠FAG+∠AFG=90°,
∵∠ADE=90°,
∴∠FAG+∠AED=90°,
∴∠AED=∠AFG
∴△MFH≌△ADE,
∴FH=AE,
∵點G是AE中點,EG=,
∴FH=AE=
由已知可得∠KDE=45°=∠HEG,
∴點K位于以G點為圓心,以AE為直徑的圓上,
∴AG=GK=EG=,
∴FG+HK=
∵HK=2FG,
∴FG=,
根據(jù)勾股定理可得AF=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,OA=8,OB=6,C點與A點關(guān)于直線OB對稱,動點P、Q分別在線段AC、AB上(點P不與點A.C重合),滿足∠BPQ=∠BAO.
(1)當OP=_______時,△APQ≌△CBP,說明理由;
(2)當△PQB為等腰三角形時,求OP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王老師給學生出了一道題:
求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同學們看了題目后發(fā)表不同的看法.小張說:條件b=﹣1是多余的.”小李說:“不給這個條件,就不能求出結(jié)果,所以不多余.”
(1)你認為他們誰說的有道理?為什么?
(2)若xm等于本題計算的結(jié)果,試求x2m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 學!鞍僮兡Х健鄙鐖F準備購買A,B兩種魔方,已知購買2個A種魔方和6個B種魔方共需130元,購買3個A種魔方和4個B種魔方所需款數(shù)相同.
(1)求這兩種魔方的單價;
(2)結(jié)合社員們的需求,社團決定購買A,B兩種魔方共100個.某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息,購進A種魔方多少個時,兩種活動費用相同?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△ADC的頂點都在方格紙格點上,將△ABC向左平移1格.再向上平移1格,
(1)在圖中畫出平移后的△A′B′C′;
(2)畫出AB邊上的高CE;
(3)過點A畫BC的平行線;
(4)在圖中,若△BCQ的面積等于△BCA的面積.則圖中滿足條件且異于點A的個點Q共有_____個.(注:格點指網(wǎng)格線的交點)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,B為切點,OC平行于弦AD,連接CD。過點D作DE⊥AB于E,交AC于點P,求證:點P平分線段DE。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com