【題目】如圖,OP平分∠AOB,PAOA、PBOB,垂足分別為AB,下列結(jié)論成立的是( )

PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP

A.①③B.①②③C.②③D.①②③④

【答案】B

【解析】

利用角平分線的性質(zhì)可確定的正誤;利用HL證明△APO△PBO全等,即可說明②③正誤;由△APO△PBO全等,可得OA=OB,結(jié)合OP平分∠AOB,根據(jù)等腰三角形三線合一的性質(zhì),即可判定的正誤.

解:如圖

由角平分線的性質(zhì)定理可知①正確;

Rt△APORt△PBO

OP=OP,PA=PB

△APO△PBOHL

∴∠APO=∠BPO,即PO平分∠APB

OA=OB

說明②③正確;

OA=OB, OP平分∠AOB,根據(jù)等腰三角形三線合一的性質(zhì)可得: OP垂直平分AB,AB不一定平分OP,故④錯(cuò)誤;

所以答案為B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動時(shí),四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),點(diǎn)的縱坐標(biāo)為,軸于點(diǎn),連接

求反比例函數(shù)的解析式;

的面積;

若點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),且滿足的面積是的面積的倍,請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O,若1=38°,則BDE的度數(shù)為(  )

A. 71° B. 76° C. 78° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)

(1) 作出△ABC關(guān)于x軸對稱的圖象.

(2) 寫出AB、C的對應(yīng)點(diǎn)A、B、C的坐標(biāo).

(3) 直接寫出△ABC的面積__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為5cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)A,B同時(shí)出發(fā),沿線段AB,BC運(yùn)動,且它們的速度都為1cm/s.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時(shí)間為ts).

1)當(dāng)t為何值時(shí),PBQ是直角三角形?

2)連接AQCP,相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動的過程中,CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,上一點(diǎn),平分,,.

1)求證:

2)如圖(2),若,連接,為邊上一點(diǎn),滿足,連接. ①求的度數(shù);

②若平分,試說明:平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某活動小組為了估計(jì)裝有個(gè)白球和若干個(gè)紅球(每個(gè)球除顏色外都相同)的袋中紅球接近多少個(gè),在不將袋中球倒出來的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗(yàn),匯總起來后,摸到紅球次數(shù)為次.

估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是多少?

請你估計(jì)袋中紅球接近多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動漫節(jié)開幕前,某動漫公司預(yù)測某種動漫玩具能夠暢銷,就分兩批分別用32000元和68000元購進(jìn)了這種玩具銷售,其中第二批購進(jìn)數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.

(1)該動漫公司這兩批各購進(jìn)多少套玩具?

(2)如果這兩批玩具每套售價(jià)相同,且全部銷售后總利潤不少于20000元,那么每套售價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案