【題目】如圖,在平面直角坐標系中,已知點A(-0),B03),C0,-1)三點.

1)求線段BC的長度;

2)若點D在直線AC上,且DB=DC,求點D的坐標.

【答案】14;(2)(,1).

【解析】

1)由點B、C的坐標,可求出線段BC的長度;

2)由DB=DC可得出點D的縱坐標,由點的坐標利用待定系數(shù)法可求出直線AC的解析式,再利用一次函數(shù)圖象上點的坐標特征,即可求出點D的坐標.

1)∵點B的坐標為(0,3),點C的坐標為(0,﹣1),∴線段BC=3﹣(﹣1=4

2)∵DB=DC,∴點D在線段BC的垂直平分線上.

∵點B的坐標為(0,3),點C的坐標為(0,﹣1),∴點D的縱坐標為1

設直線AC的解析式為y=kx1

A,0)在直線AC上,∴0k1,解得:k,∴直線AC的解析式為y

∵點D在直線AC上,∴1x1,解得:x=2,∴點D的坐標為(,1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】初中生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此某市教育局對該市部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了 名學生;

2)將圖①補充完整;

3)求出圖②中C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調查結果,請你估計該市近20000名初中生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:如果兩個一次函數(shù)的一次項系數(shù)和常數(shù)項互換,即y=kx+by=bx+k(其中|k|≠|b|),稱這樣的兩個一次函數(shù)為互助一次函數(shù),例如就是互助一次函數(shù).根據(jù)規(guī)定解答下列問題:

1)填空:一次函數(shù)與它的互助一次函數(shù)的交點坐標為______

2)若兩個一次函數(shù)y=k-bx k - 2b是互助一次函數(shù),求兩函數(shù)圖象與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風港M在北偏東60°方向.為了在臺風到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GMx軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點T,使TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;

(3)點P為拋物線y1上一動點,過點Py軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=ACADBC,垂足為點D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點E

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為m,),反比例函數(shù)的圖像與菱形對角線AO交于D,連接BD,BDx軸時,k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向,從C島看AB兩島的視角ACB是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過AB兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

1)求拋物線的解析式;

2)求ABC的面積;

3)在拋物線的對稱軸上,是否存在點M,使ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.

查看答案和解析>>

同步練習冊答案