【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有aba(ab)1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:252×(25)12×(3)1=-61=-5.

(1)(2) 3的值;

(2)3x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來(lái).

【答案】(1)11;(2)x>-1.

【解析】試題分析:1)按照定義新運(yùn)算ab=aa-b+1,求解即可;

2)先按照定義新運(yùn)算ab=aa-b+1,得出3x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范圍,即可在數(shù)軸上表示.

試題解析:(1aba(ab)1

(2)3=-2×(23)110111; (23x13

3(3x)113,

93x113

3x3,

x>-1.

在數(shù)軸上表示如下.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:

如圖,已知∠12,BC,可推得ABCD.理由如下:

∵∠12(已知),且∠14(____________),

∴∠24(等量代換),

CEBF(__________________________)

∴∠________3(______________________)

又∵∠BC(已知),

∴∠3B(等量代換)

ABCD(__________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P∠AOB的角平分線(xiàn)上的一點(diǎn),點(diǎn)D在邊OA上.愛(ài)動(dòng)腦筋的小剛經(jīng)過(guò)仔細(xì)觀(guān)察后,進(jìn)行如下操作:在邊OB上取一點(diǎn)E,使得PE=PD,這時(shí)他發(fā)現(xiàn)∠OEP∠ODP之間有一定的數(shù)量關(guān)系,請(qǐng)你寫(xiě)出∠OEP∠ODP所有可能的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由7個(gè)形狀、大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點(diǎn)稱(chēng)為格點(diǎn).已知每個(gè)正六邊形的邊長(zhǎng)為1△ABC的頂點(diǎn)都在格點(diǎn)上,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,點(diǎn)DAC上,點(diǎn)EBC的延長(zhǎng)線(xiàn)上,且BDDE.

1)若點(diǎn)DAC的中點(diǎn),如圖1,求證:ADCE

2)若點(diǎn)D不是AC的中點(diǎn),如圖2,試判斷ADCE的數(shù)量關(guān)系,并證明你的結(jié)論:(提示:過(guò)點(diǎn)DDFBC,交AB于點(diǎn)F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°AC=BC,延長(zhǎng)AB至點(diǎn)D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.

1)求證:ACD≌△BCE;

2)AC=3,BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰和等腰中,斜邊中點(diǎn)也是的中點(diǎn),,

)如圖,則的關(guān)系是__________.

)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),請(qǐng)畫(huà)出圖形井求的值.

)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),角度為,請(qǐng)判斷()的結(jié)論是否仍然成立,若成立請(qǐng)證明,若不成立請(qǐng)畫(huà)圖說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠C=90°,有一內(nèi)接正方形DEFC,連接AFDEG,若AC=15,BC=10.

(1)求正方形DEFC的邊長(zhǎng);(2)求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及S四邊形ABDC.

(2)y軸上是否存在一點(diǎn)Q,連接QA,QB,使SQAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)Q的坐標(biāo);若不存在,試說(shuō)明理由.

(3)如圖②,點(diǎn)P是線(xiàn)段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合),給出下列結(jié)論:①的值不變,②的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案