【題目】如圖,ABO直徑,EO上一點(diǎn),EAB的平分線ACO于點(diǎn)C,過C點(diǎn)作CDAE的延長(zhǎng)線于點(diǎn)D,直線CD與射線AB交于點(diǎn)P

(1)判斷直線DPO的位置關(guān)系,并說明理由;

(2)若DC=4,⊙O的半徑為5,求PB的長(zhǎng).

【答案】(1)相切,證明詳見解析;(2).

【解析】

(1)連結(jié)OC,AC平分∠EAB得到∠1=2,加上∠2=3,則∠1=3,于是可判斷OCAD,因?yàn)?/span>CDAD,所以OCCD,則根據(jù)切線的判定定理得到DC為圓O切線;

(2)連結(jié)BC, 可得RtACDRtACB,計(jì)算出AD=8, OCAD,可得 OPC∽△APD然后利用對(duì)應(yīng)邊成比例可計(jì)算出PB的長(zhǎng).

(1) 直線DPO相切,

連結(jié)OC,如圖,

AC平分 EAB,1=2,

OA=OC, 2=3

1=3,OCAD,

CDAD,OCCD,

DP0切線;

(2):連結(jié)BC,如圖:RtACDRtACB,

ADC=∠ACB=90,1=2, RtACDRtACB,

,設(shè)AD=x,則,

,解得:(舍去),,

:AD=8,

由(1)得OCAD, OPC∽△APD

,設(shè)BP的長(zhǎng)為y,可得:

,解得:y=

BP的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸于(﹣1,0)、(3,0)兩點(diǎn),以下四個(gè)結(jié)論正確的是(用序號(hào)表示)______________

(1)圖象的對(duì)稱軸是直線 x=1

(2)當(dāng)x>1時(shí),yx的增大而減小

(3)一元二次方程ax2+bx+c=0的兩個(gè)根是﹣13

(4)當(dāng)﹣1<x<3時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A-5,0),B-1,4

1)求直線AB的表達(dá)式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a的兩點(diǎn)之間的距離是5,那么__________;

2)若數(shù)軸上表示數(shù)a的點(diǎn)位于6之間,求的值;

3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,AC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°OC=2,求弦CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式

2)解不等式組:并將其解集表示在如圖所示的數(shù)軸上

3,并寫出不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】班級(jí)元旦晚會(huì)上,主持人給大家?guī)砹艘粋(gè)有獎(jiǎng)競(jìng)猜題,他在一個(gè)不透明的袋子中放了若干個(gè)形狀大小完全相同的白球,想請(qǐng)大家想辦法估計(jì)出袋中白球的個(gè)數(shù).?dāng)?shù)學(xué)課代表小明是這樣來估計(jì)的:他先往袋中放入10個(gè)形狀大小與白球相同的紅球,混勻后再從袋子中隨機(jī)摸出20個(gè)球,發(fā)現(xiàn)其中有4個(gè)紅球.如果設(shè)袋中有白球x個(gè),根據(jù)小明的方法用來估計(jì)袋中白球個(gè)數(shù)的方程是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知:a2,b+2,求代數(shù)式a2bab2的值;

2)已知實(shí)數(shù)x、y滿足x2+10x++250,則(x+y2019的值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案